<--- Back to Details
First PageDocument Content
Trigonometry / Fermat point / Triangle / Law of cosines / Trigonometric functions / Quadrilateral / Right triangle / Equilateral triangle / Mathematical fallacy / Geometry / Triangle geometry / Triangles
Date: 2014-06-17 23:39:59
Trigonometry
Fermat point
Triangle
Law of cosines
Trigonometric functions
Quadrilateral
Right triangle
Equilateral triangle
Mathematical fallacy
Geometry
Triangle geometry
Triangles

SMT[removed]Geometry Test and Solutions February 19, 2011

Add to Reading List

Source URL: sumo.stanford.edu

Download Document from Source Website

File Size: 234,66 KB

Share Document on Facebook

Similar Documents

Triangle geometry / Calculus / Continuous function / Triangle / Equilateral triangle / Bernhard Riemann / Mathematical analysis / Fermat point / Limit of a function

TAKE-HOME CLASS QUIZ: DUE FRIDAY MARCH 1: MAX/MIN VALUES: ONE-VARIABLE RECALL MATH 195, SECTION 59 (VIPUL NAIK) Your name (print clearly in capital letters): YOU ARE FREE TO DISCUSS ALL QUESTIONS, BUT PLEASE ONLY ENTER F

DocID: 1pqGC - View Document

Triangulation / Self-dual polyhedra / Tetrahedron / Delaunay triangulation / Triangle / Equilateral triangle / Circumscribed circle / Fermat point / Geometry / Triangles / Triangle geometry

CCCG 2011, Toronto ON, August 10–12, 2011 Point Location in Well-Shaped Meshes Using Jump-and-Walk∗ Jean-Lou De Carufel† Craig Dillabaugh‡

DocID: 18uZa - View Document

Linear algebra / Triangle inequality / Circle / Sphere / Delaunay triangulation / Triangle / Differential geometry of surfaces / Fermat point / Geometry / Metric geometry / Triangles

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014 The Convex Hull of Points on a Sphere is a Spanner∗ Prosenjit Bose† Simon Pratt‡

DocID: 17ZoE - View Document

Projection / Fermat point / Valuation / Trigonometric functions / Pi / Homotopy groups of spheres / Mathematics / Mathematical analysis / Abstract algebra

The Projection Median of a Set of Points in R2 Stephane Durocher∗ David Kirkpatrick† Kimberling triangle centre X], or any combination of Fermat-Steiner-Torricelli-Weber point. An

DocID: 17StW - View Document

Triangulation / Self-dual polyhedra / Tetrahedron / Delaunay triangulation / Triangle / Equilateral triangle / Circumscribed circle / Fermat point / Geometry / Triangles / Triangle geometry

CCCG 2011, Toronto ON, August 10–12, 2011 Point Location in Well-Shaped Meshes Using Jump-and-Walk∗ Jean-Lou De Carufel† Craig Dillabaugh‡

DocID: 17Shf - View Document