<--- Back to Details
First PageDocument Content
Sobolev space / Laplace transform / C0-semigroup / Elliptic boundary value problem / Mathematical analysis / Mathematics / Fourier analysis
Date: 2015-01-21 02:45:32
Sobolev space
Laplace transform
C0-semigroup
Elliptic boundary value problem
Mathematical analysis
Mathematics
Fourier analysis

The Stokes semigroup on non-decaying spaces

Add to Reading List

Source URL: www.kurims.kyoto-u.ac.jp

Download Document from Source Website

File Size: 636,44 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Mathematics / Geometry / Metric geometry / Sobolev spaces / Inequalities / Function spaces / Measure theory / Sobolev inequality / Metric space / Lp space / Quasi-isometry

Large scale Sobolev inequalities on metric measure spaces and applications. Romain Tessera October 29, 2010 Abstract For functions on a metric measure space, we introduce a notion of

DocID: 1xTnT - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rsVn - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rr2b - View Document

Mathematical analysis / Operator theory / Fourier analysis / Partial differential equations / Sobolev space / Differential forms on a Riemann surface

c 2011 Society for Industrial and Applied Mathematics ! SIAM J. NUMER. ANAL. Vol. 49, No. 2, pp. 845–868

DocID: 1rkz0 - View Document

Mathematical analysis / Operator theory / Fourier analysis / Partial differential equations / Sobolev space / Differential forms on a Riemann surface

c 2011 Society for Industrial and Applied Mathematics ! SIAM J. NUMER. ANAL. Vol. 49, No. 2, pp. 845–868

DocID: 1qZqX - View Document