<--- Back to Details
First PageDocument Content
Ordinary differential equations / Asymptotic analysis / Mathematical physics / Systems theory / Duffing equation / Nonlinear system / Chaos theory / Limit-cycle / Bifurcation theory / Mathematical analysis / Dynamical systems / Mathematics
Date: 2014-04-17 07:13:30
Ordinary differential equations
Asymptotic analysis
Mathematical physics
Systems theory
Duffing equation
Nonlinear system
Chaos theory
Limit-cycle
Bifurcation theory
Mathematical analysis
Dynamical systems
Mathematics

1 AL Introduction Brief History

Add to Reading List

Source URL: media.wiley.com

Download Document from Source Website

File Size: 430,51 KB

Share Document on Facebook

Similar Documents

Scattering from an Impurity: Lax-Phillips approach ∗ P.Kurasov Dept. of Mathematics, Stockholm Univ., 10691 Stockholm, SWEDEN; Dept. of Mathematical and Computational Physics,

DocID: 1vp0G - View Document

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 12 DECEMBER 2000

DocID: 1vcE3 - View Document

Mathematical Grammar School Cup Solutions to the Physics Test 1. B 2. E 3. C

DocID: 1vbC3 - View Document

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen–7547

DocID: 1v9Bt - View Document

Letters in Mathematical Physics 59: 227–242, 2002. # 2002 Kluwer Academic Publishers. Printed in the NetherlandsPoint Interactions: PT -Hermiticity and Reality

DocID: 1v3DD - View Document