<--- Back to Details
First PageDocument Content
Attractor / Lyapunov exponent / Differential equation / Hénon map / Rössler attractor / Dynamical systems / Lorenz attractor / Chaos theory
Date: 2006-10-06 21:12:09
Attractor
Lyapunov exponent
Differential equation
Hénon map
Rössler attractor
Dynamical systems
Lorenz attractor
Chaos theory

Add to Reading List

Source URL: www.eecs.berkeley.edu

Download Document from Source Website

File Size: 305,51 KB

Share Document on Facebook

Similar Documents

Chris Marx* (), Mathematics, Caltech, Pasadena, CAZero Lyapunov exponent for quasi-periodic Schr¨odinger operators. It was the fractal nature of the spectrum of the almost M

DocID: 1uJiA - View Document

Dynamical systems / Mathematics / Mathematical analysis / Attractor / Lyapunov exponent / Vector field / Lyapunov stability / Systems science

CHAOS 17, 043119 共2007兲 Regions of nonexistence of invariant tori for spin-orbit models Alessandra Cellettia兲 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, IR

DocID: 1r9Tj - View Document

Mathematical analysis / Mathematics / Dynamical systems / Fourier analysis / Operator theory / Linear algebra / Lyapunov exponent / Partial differential equation / Almost periodic function / Von Neumann algebra / Spectral theory / Orthogonal polynomials

9th AIMS CONFERENCE – ABSTRACTS 92 Special Session 21: Dynamical Systems and Spectral Theory David Damanik, Rice University, USA

DocID: 1r7by - View Document

Dynamical systems / Mathematical analysis / Mathematics / Theoretical physics / Lyapunov exponent / Oseledets theorem / Lyapunov stability / Chaos theory / Tangent space / Lyapunov time / Lyapunov / Covariance and contravariance of vectors

PDF Document

DocID: 1qr2O - View Document

Dynamical systems / Fluid dynamics / Physics / Chaos theory / Turbulence / Mechanics / Aerodynamics / Lagrangian coherent structure / Chaotic mixing / Invariant manifold / Lyapunov exponent / Flow

9th AIMS CONFERENCE – ABSTRACTS 120 Special Session 27: Transport Barriers in Dynamical Systems George Haller, McGill University, Canada

DocID: 1qd5k - View Document