<--- Back to Details
First PageDocument Content
Lemmas / Szemerédi regularity lemma / Graph coloring / Algorithmic version for Szemerédi regularity partition / Approximately finite dimensional C*-algebra / Mathematics / Theoretical computer science / Graph theory
Date: 2014-08-14 05:01:42
Lemmas
Szemerédi regularity lemma
Graph coloring
Algorithmic version for Szemerédi regularity partition
Approximately finite dimensional C*-algebra
Mathematics
Theoretical computer science
Graph theory

Complexity of Nondeterministic Graph Parameter Testing Marek Karpinski∗ Roland Mark´o†

Add to Reading List

Source URL: theory.cs.uni-bonn.de

Download Document from Source Website

File Size: 264,62 KB

Share Document on Facebook

Similar Documents

´ SZEMEREDI’S REGULARITY LEMMA 9.4

DocID: 1mHp7 - View Document

Szemerédi regularity lemma / Bipartite graph / Extremal graph theory / Graph / Minor / Line graph / Graph theory / Mathematics / Hypergraph

Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs W. T. Gowers Abstract. The main results of this paper are regularity and counting lemmas for 3uniform hypergraphs. A combination of these two results giv

DocID: 19z2R - View Document

Graph theory / Szemerédi regularity lemma / Inner product space / Function / Combinatory logic / Mathematics / Lemmas / Functions and mappings

Bipartite graphs of approximate rank 1. W. T. Gowers §1. Introduction. Quasirandomness is a central concept in graph theory, and has played an important part in arithmetic combinatorics as well. Roughly speaking, a noti

DocID: 19lUE - View Document

Graph theory / Szemerédi regularity lemma / Uniform space / Partition / Function / Algorithmic version for Szemerédi regularity partition / Mathematics / Lemmas / Combinatorics

´ SZEMEREDI’S REGULARITY LEMMA FOR MATRICES AND SPARSE GRAPHS ALEXANDER SCOTT Abstract. Szemer´edi’s Regularity Lemma is an important tool

DocID: 17CIR - View Document

Szemerédi regularity lemma / Year of birth missing / Vazirani / Amin Shokrollahi / Combinatorics / Sindhi people / Lemmas / Graph theory

Table of Contents Multiple Access Communications Using Combinatorial Designs . . . . . . . . . . Charles J. Colbourn 1

DocID: 15Rah - View Document