<--- Back to Details
First PageDocument Content
Mathematical analysis / Sobolev spaces / Mathematics / Partial differential equations / Geometry / Lipschitz domain / Operator theory / Sobolev spaces for planar domains
Date: 2014-08-08 12:34:20
Mathematical analysis
Sobolev spaces
Mathematics
Partial differential equations
Geometry
Lipschitz domain
Operator theory
Sobolev spaces for planar domains

Prague-Sum_abstract_Medkova.dvi

Add to Reading List

Source URL: www.prague-sum.com

Download Document from Source Website

File Size: 45,06 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Mathematics / Geometry / Metric geometry / Sobolev spaces / Inequalities / Function spaces / Measure theory / Sobolev inequality / Metric space / Lp space / Quasi-isometry

Large scale Sobolev inequalities on metric measure spaces and applications. Romain Tessera October 29, 2010 Abstract For functions on a metric measure space, we introduce a notion of

DocID: 1xTnT - View Document

Mathematika (Page 1 of 30) c University College London doi:S0025579314000278 INTERPOLATION OF HILBERT AND SOBOLEV SPACES: QUANTITATIVE ESTIMATES AND COUNTEREXAMPLES S. N. CHANDLER-WILDE, D. P. HEWETT AND A. MOIO

DocID: 1tpU0 - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rsVn - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rr2b - View Document

Mathematical analysis / Mathematics / Sobolev spaces / Fourier analysis / Fractional calculus / Operator theory / Differential forms on a Riemann surface

COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol), No.2, pp.154–177 c 2006 Institute of Mathematics of the National Academy of Sciences of Belarus  SUPRACONVERGENCE OF A FINITE DIFFERENCE SCHEME FOR ELLIPTIC B

DocID: 1rkVO - View Document