<--- Back to Details
First PageDocument Content
Statistical models / Machine learning / Computational science / Computational neuroscience / Graphical model / Regression analysis / Sargur Srihari / Computational forensics / Neural network / Statistics / Science / Econometrics
Date: 2013-03-08 07:29:44
Statistical models
Machine learning
Computational science
Computational neuroscience
Graphical model
Regression analysis
Sargur Srihari
Computational forensics
Neural network
Statistics
Science
Econometrics

Microsoft Word - IICAI-2011-srihari

Add to Reading List

Source URL: www.iiconference.org

Download Document from Source Website

File Size: 489,09 KB

Share Document on Facebook

Similar Documents

Computational neuroscience / Artificial intelligence / Artificial neural networks / Computing / Applied mathematics / Computational statistics / Market research / Mathematical psychology / Convolutional neural network / Image segmentation / Document Object Model / Market segmentation

Hierarchical segmentation of graphical interfaces for Document Object Model reconstruction C˘at˘alin F. Pert, icas, 1 Mihai S. Baba 1 Homa Davoudi 1 R˘azvan V. Florian 1 Figure 1. Detection of graphical elements usin

DocID: 1xVN5 - View Document

Inferring novel associations between SNP sets and gene sets in eQTL study using sparse graphical model Wei Cheng 1 , Xiang Zhang 2 , Yubao Wu 2 , Xiaolin Yin 2 , Jing Li 2 , David Heckerman 3 , and Wei Wang 4 1

DocID: 1vdv0 - View Document

BUDVYTIS ET AL.: MOT FOR VIDEO SEGMENTATION 1 MoT - Mixture of Trees Probabilistic Graphical Model for Video Segmentation

DocID: 1uILx - View Document

DeepBach: a Steerable Model for Bach Chorales Generation Ga¨etan Hadjeres 1 2 Franc¸ois Pachet 1 2 Frank Nielsen 3 Abstract This paper introduces DeepBach, a graphical

DocID: 1u3qz - View Document

COMPRESSIVE NONPARAMETRIC GRAPHICAL MODEL SELECTION FOR TIME SERIES Alexander Jung 1, Reinhard Heckel 2, Helmut B¨olcskei 2, and Franz Hlawatsch 1 1 Institute of Telecommunications, Vienna University of Technology, Aus

DocID: 1tO42 - View Document