<--- Back to Details
First PageDocument Content
Optical character recognition / Automatic identification and data capture / Linguistics / Speech recognition / Unicode / N-gram / HOCR / Microsoft Office Document Imaging / Word error rate / Computational linguistics / Science / Artificial intelligence
Date: 2014-05-31 23:55:47
Optical character recognition
Automatic identification and data capture
Linguistics
Speech recognition
Unicode
N-gram
HOCR
Microsoft Office Document Imaging
Word error rate
Computational linguistics
Science
Artificial intelligence

Proceedings Template - WORD

Add to Reading List

Source URL: www.projectcomputing.com

Download Document from Source Website

File Size: 635,48 KB

Share Document on Facebook

Similar Documents

Computing / Software / User interface techniques / Humancomputer interaction / Input/output / User interfaces / Computational linguistics / Speech recognition / Typing / Word error rate / User interface / Autocomplete

Intelligently Aiding Human-Guided Correction of Speech Recognition

DocID: 1rsl1 - View Document

Computing / Humancomputer interaction / Software / User interface techniques / Input/output / Computational linguistics / Dasher / GNOME Accessibility / Speech recognition / Words per minute / Computer keyboard / Word error rate

Speech Dasher: A Demonstration of Text Input using Speech and Approximate Pointing Keith Vertanen David J.C. MacKay

DocID: 1rsex - View Document

Linguistics / Language / Orthography / Phonetics / Computational linguistics / Applied linguistics / Spelling / Speech recognition / Phonemic orthography / Word error rate / Phonetic alphabet / Language acquisition

Thu.P9c.01 Spelling as a Complementary Strategy for Speech Recognition

DocID: 1qGkb - View Document

Machine learning / Computational linguistics / Speech recognition / Artificial intelligence / Humancomputer interaction / Markov models / Computer accessibility / Word error rate / Artificial neural network / Language model / N-gram

Listen, Attend and Spell arXiv:1508.01211v2 [cs.CL] 20 Aug 2015 William Chan Carnegie Mellon University

DocID: 1qDN1 - View Document

Artificial intelligence / Computational linguistics / Evaluation of machine translation / Speech recognition / Information / Statistics / Optical character recognition / Symbols / Unicode / Precision and recall / Word error rate / Error detection and correction

Keep, Change or Delete? Setting up a Low Resource OCR Post-correction Framework for a Digitized Old Finnish Newspaper Collection Kimmo Kettunen Center for Preservation and Digitisation, National Library of Finland, Mikke

DocID: 1qrU1 - View Document