<--- Back to Details
First PageDocument Content
Ring theory / Depth / Regular local ring / System of parameters / Discrete valuation ring / Krull dimension / Ring / Local ring / Polynomial ring / Abstract algebra / Algebra / Commutative algebra
Date: 2007-06-06 11:24:41
Ring theory
Depth
Regular local ring
System of parameters
Discrete valuation ring
Krull dimension
Ring
Local ring
Polynomial ring
Abstract algebra
Algebra
Commutative algebra

Chapter 8 Regular Local Rings

Add to Reading List

Source URL: www.math.uiuc.edu

Download Document from Source Website

File Size: 201,37 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Algebraic geometry / Zariski geometry / Algebraic variety / Sheaf / Irreducible component / Ample line bundle / Valuation / Type / Krull dimension

Lectures on Zariski-type structures Part I Boris Zilber 1

DocID: 1r9W1 - View Document

Ring theory / Algebras / Commutative algebra / Brauer group / Central simple algebra / Azumaya algebra / Ring / Quaternion algebra / Division algebra / Local ring / Krull dimension / Separable algebra

487 Documenta Math. Wedderburn’s Theorem for Regular Local Rings Manuel Ojanguren

DocID: 1pitZ - View Document

Algebraic geometry / Commutative algebra / Algebraic varieties / Dimension / Krull dimension / Valuation / Morphism of algebraic varieties / Zariski geometry

Analytic Zariski structures, predimensions and non-elementary stability Boris Zilber University of Oxford 25 August 2008 The notion of an analytic Zariski structure was introduced in [1] by the

DocID: 1p1lL - View Document

Degrees of freedom / Statistical theory / PDQ / Dimension / Krull dimension

PDF Document

DocID: 1ovEx - View Document

Commutative algebra / Gorenstein ring / CohenMacaulay ring / Krull dimension / Integral element / Regular sequence / Ring / Local ring / Complete intersection ring / Regular local ring / Gorenstein scheme

MIMS Technical Report No) QUASI-SOCLE IDEALS AND GOTO NUMBERS OF PARAMETERS SHIRO GOTO, SATORU KIMURA, TRAN THI PHUONG, AND HOANG LE TRUONG Abstract. Goto numbers g(Q) = max{q ∈ Z | Q : mq is integra

DocID: 1on8p - View Document