<--- Back to Details
First PageDocument Content
Mathematics / Applied mathematics / Fourier analysis / Integral transforms / Joseph Fourier / Sampling / Fast Fourier transform / Fourier transform / Discrete signal / Digital signal processing / Mathematical analysis / Signal processing
Date: 2013-02-19 04:57:23
Mathematics
Applied mathematics
Fourier analysis
Integral transforms
Joseph Fourier
Sampling
Fast Fourier transform
Fourier transform
Discrete signal
Digital signal processing
Mathematical analysis
Signal processing

Microsoft PowerPoint - feb2013mit.pptx

Add to Reading List

Source URL: groups.csail.mit.edu

Download Document from Source Website

File Size: 928,71 KB

Share Document on Facebook

Similar Documents

The Journal of Fourier Analysis and Applications Moments of the Rudin-Shapiro Polynomials Christophe Doche, and Laurent Habsieger Communicated by Hans G. Feichtinger

DocID: 1vewr - View Document

IEEE TRANSACTIONS ON INFORMATION D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV: Extension to many dimensions; Generalized prolate spheroidal functions,” Bell Syst. Tech. J., vol

DocID: 1v1ML - View Document

FOURIER ANALYSIS AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 56 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2002

DocID: 1uBqy - View Document

Microsoft Word - Fourier analysis of the P53-MDM2 system - revised.doc

DocID: 1ul1Q - View Document

Uncertainty Principles for Fourier Multipliers Michael Northington, Georgia Institute of Technology Many questions in time-frequency analysis can be reduced to properties of a sequence of complex exponentials in certain

DocID: 1u9xH - View Document