<--- Back to Details
First PageDocument Content
Numerical analysis / Unitary operators / Transforms / Discrete cosine transform / Discrete Fourier transform / Fast Fourier transform / Hadamard transform / Integral transform / Karhunen–Loève theorem / Mathematical analysis / Fourier analysis / Digital signal processing
Date: 2008-03-29 08:49:01
Numerical analysis
Unitary operators
Transforms
Discrete cosine transform
Discrete Fourier transform
Fast Fourier transform
Hadamard transform
Integral transform
Karhunen–Loève theorem
Mathematical analysis
Fourier analysis
Digital signal processing

Add to Reading List

Source URL: dasan.sejong.ac.kr

Download Document from Source Website

File Size: 571,38 KB

Share Document on Facebook

Similar Documents

Walsh-Hadamard Transform in the Homomorphic Encrypted Domain and Its Application in Image Watermarking Peijia Zheng, Jiwu Huang School of Information Science and Technology Sun Yat-Sen University

DocID: 1muZD - View Document

Transforms / Fast Fourier transform / Mathematics / Digital signal processing / Mathematical analysis / Hadamard transform

Microsoft Word - ACAT2002_Matousek_transparencies.doc

DocID: 1geOS - View Document

1 Reversible Hadamard Transform Hakob Sarukhanyan ∗ , Sos Agaian ∗∗ , Karen Egiazarian ∗∗∗ and Jaakko Astola ∗ Institute for Informatics and Automation Problems of NAS of Armenia,

DocID: 1fpfm - View Document

COMPUTER SCIENCE TRIPOS Part IB – 2012 – Paper 4 4 Computer Graphics and Image Processing (PR) (a) Describe how transform coding can be used to compress image data. [4 marks] (b) Explain the Walsh-Hadamard transform

DocID: 1eaLt - View Document

Applied mathematics / Quantum computer / Qubit / Quantum circuit / Quantum algorithm / Toric code / Quantum annealing / Quantum decoherence / Hadamard transform / Quantum information science / Theoretical computer science / Quantum mechanics

To appear in Phys. Rev. A Universal quantum simulation with prethreshold superconducting qubits: Single-excitation subspace method Michael R. Geller,1, ∗ John M. Martinis,2 Andrew T. Sornborger,3 Phillip C. Stancil,1,

DocID: 19weQ - View Document