<--- Back to Details
First PageDocument Content
Quantification / Model theory / Metalogic / Branching quantifier / First-order logic / FO / Skolem normal form / Propositional variable / Universal quantification / Logic / Mathematical logic / Predicate logic
Date: 2010-01-30 14:49:57
Quantification
Model theory
Metalogic
Branching quantifier
First-order logic
FO
Skolem normal form
Propositional variable
Universal quantification
Logic
Mathematical logic
Predicate logic

Add to Reading List

Source URL: research.microsoft.com

Download Document from Source Website

File Size: 1,88 MB

Share Document on Facebook

Similar Documents

Logic / Mathematical logic / Mathematics / Propositional calculus / Automated theorem proving / Boolean algebra / Syntax / Boolean satisfiability problem / Clause / Valuation / Propositional variable / Unit propagation

Microsoft PowerPoint - perspCompatibility Mode]

DocID: 1r0cq - View Document

Logic / Mathematical logic / Predicate logic / Propositional calculus / Model theory / Syntax / First-order logic / Well-formed formula / Proposition / Functional predicate / Predicate variable / Universal quantification

predicate logic logical verification week

DocID: 1q9E7 - View Document

Propositional calculus / Propositional variable / Software development / Proposition / Application software / Software / Weidenbach /  Vulkaneifel / Substitution / Weidenbach

Microsoft PowerPoint - perspppt [Compatibility Mode]

DocID: 1os6W - View Document

Improving Variable Selection Process in Stochastic Local Search for Propositional Satisfiability Anton Belov and Zbigniew Stachniak Department of Computer Science and Engineering, York University, Toronto, Canada {anton

DocID: 1jfj0 - View Document

Algebraic logic / Fuzzy logic / Logic in computer science / Algebraic structures / Electronic design automation / Satisfiability Modulo Theories / MV-algebra / Boolean satisfiability problem / Propositional variable / Mathematics / Mathematical logic / Logic

Basic Logic, SMT solvers and nitely generated varieties of GBL-algebras Peter Jipsen Chapman University, Orange, California TACL 2013, July 29, Vanderbilt University

DocID: 1awh9 - View Document