<--- Back to Details
First PageDocument Content
Latent semantic indexing / Vector space model / Latent semantic analysis / Search engine indexing / Tf*idf / Relevance feedback / Learning to rank / Ranking SVM / Latent Dirichlet allocation / Information science / Information retrieval / Science
Date: 2010-01-14 11:39:44
Latent semantic indexing
Vector space model
Latent semantic analysis
Search engine indexing
Tf*idf
Relevance feedback
Learning to rank
Ranking SVM
Latent Dirichlet allocation
Information science
Information retrieval
Science

Supervised Semantic Indexing Bing Bai

Add to Reading List

Source URL: www.cse.wustl.edu

Download Document from Source Website

File Size: 319,44 KB

Share Document on Facebook

Similar Documents

Linguistics / Computational linguistics / Statistical natural language processing / Natural language processing / Corpus linguistics / Applied linguistics / Speech recognition / Topic model / Latent Dirichlet allocation / N-gram / Stemming / Text corpus

Understanding Text Pre-Processing for Latent Dirichlet Allocation Alexandra Schofield1 M˚ans Magnusson2 Laure Thompson1 David Mimno3 1 Department of Computer Science, Cornell University, Ithaca, NY {xanda, laurejt}@cs.c

DocID: 1xUNS - View Document

HarpLDA+: Optimizing Latent Dirichlet Allocation for Parallel Efficiency Bo Peng1 Shaojuan Zhu3 Bingjing Zhang1 Langshi Chen1 Mihai Avram1 Robert Henschel2 Craig Stewart2 Emily Mccallum3

DocID: 1uZcF - View Document

WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation Jianfei Chen†‡ , Kaiwei Li†§ , Jun Zhu†‡ , Wenguang Chen†§ † Dept. of Comp. Sci. & Tech.; TNList Lab; CBICR Center; Tsinghua Univ

DocID: 1uZ6x - View Document

Journal of Machine Learning Research1022 Submitted 2/02; Published 1/03 Latent Dirichlet Allocation David M. Blei

DocID: 1thkm - View Document

Statistical natural language processing / Education / Natural language processing / Latent Dirichlet allocation / Topic model / Learning / Textbook / Information retrieval / Digital textbook / Ranking / Publishing / Bag-of-words model in computer vision

When One Textbook is not Enough: Linking Multiple Textbooks Using Probabilistic Topic Models Julio Guerra12 , Sergey Sosnovsky3 , and Peter Brusilovsky1 1

DocID: 1r8Au - View Document