<--- Back to Details
First PageDocument Content
Differential geometry / Surfaces / Differential geometers / Beltrami–Klein model / Non-Euclidean geometry / Differential geometry of surfaces / Hyperbolic space / Poincaré metric / Projective geometry / Geometry / Hyperbolic geometry / Homogeneous spaces
Date: 2013-12-11 20:27:35
Differential geometry
Surfaces
Differential geometers
Beltrami–Klein model
Non-Euclidean geometry
Differential geometry of surfaces
Hyperbolic space
Poincaré metric
Projective geometry
Geometry
Hyperbolic geometry
Homogeneous spaces

On Hilbert’s fourth problem arXiv:1312.3172v1 [math.HO] 11 Dec 2013

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 461,93 KB

Share Document on Facebook

Similar Documents

Herbrand’s theorem and non-Euclidean geometry Michael Beeson, Pierre Boutry, Julien Narboux To cite this version: Michael Beeson, Pierre Boutry, Julien Narboux. Herbrand’s theorem and non-Euclidean geometry. Bulletin

DocID: 1t313 - View Document

Geometry / Space / Hyperbolic geometry / Hyperbolic space / Differential geometry of surfaces / 3-manifold / Hyperbolic manifold / Geometrization conjecture / Non-Euclidean geometry / Constant curvature / Poincar metric / Riemannian geometry

Hyperbolic geometry MA 448 Caroline Series With assistance from Sara Maloni Figures by Sara Maloni and Khadija Farooq

DocID: 1qzbI - View Document

Geometry / Space / Hyperbolic geometry / Elementary geometry / Classical geometry / Foundations of geometry / Non-Euclidean geometry / Euclidean geometry / BeltramiKlein model / Hyperbolic space / Parallel / Absolute geometry

BRIDGES Mathematical Connections in Art, Mnsic, and Science The Circle: A Paradigm for Paradox

DocID: 1q7vo - View Document

Mathematics / Differential geometers / Number theorists / Science and technology / Carl Friedrich Gauss / Gauss / Johann Christian Martin Bartels / Disquisitiones Arithmeticae / Non-Euclidean geometry / Karin Reich

Sci & Educ:717–721 DOIs11191z BOOK REVIEW Karin Reich and Elena Roussanova: Carl Friedrich Gauss und Russland: Sein Briefwechsel mit in Russland

DocID: 1q3YT - View Document

Elementary geometry / Foundations of geometry / Non-Euclidean geometry / Parallel postulate / Angle / Hyperbolic geometry / Giovanni Girolamo Saccheri / Saccheri quadrilateral / Euclidean geometry / Geometry / Spherical geometry / Omar Khayyam

1 The Question of Parallels We sketch a very brief history of certain aspects of geometry as background for the material in this book. Euclid is the central figure but is neither the beginning nor the end of our story.

DocID: 1pxCr - View Document