<--- Back to Details
First PageDocument Content
Mathematics / Differential equations / Calculus / Abstraction / Partial differential equation / Ordinary differential equation / Equation / Artificial neural network / Linear differential equation / Numerical methods for ordinary differential equations
Date: 2018-08-06 06:17:49
Mathematics
Differential equations
Calculus
Abstraction
Partial differential equation
Ordinary differential equation
Equation
Artificial neural network
Linear differential equation
Numerical methods for ordinary differential equations

Towards Solving Differential Equations through Neural Programming Forough Arabshahi 1 Sameer Singh 1 Animashree Anandkumar 2 1. Introduction Differential equations are used to model numerous phenomena such as heat, elec

Add to Reading List

Source URL: uclmr.github.io

Download Document from Source Website

File Size: 261,53 KB

Share Document on Facebook

Similar Documents

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

DocID: 1uYik - View Document

Deep Reinforcement Learning for Partial Differential Equation Control Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski Abstract— This paper develops a data-driven method for control of partial differential equati

Deep Reinforcement Learning for Partial Differential Equation Control Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski Abstract— This paper develops a data-driven method for control of partial differential equati

DocID: 1uLR0 - View Document

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Deep Reinforcement Learning for Partial Differential Equation Control Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Deep Reinforcement Learning for Partial Differential Equation Control Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

DocID: 1untp - View Document

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

DocID: 1ujg3 - View Document