<--- Back to Details
First PageDocument Content
Linear algebra / Preconditioner / Iterative method / Biconjugate gradient stabilized method / Conjugate gradient method / Cholesky decomposition / LU decomposition / Sparse matrix / Krylov subspace / Numerical linear algebra / Numerical analysis / Algebra
Date: 2015-02-18 15:11:46
Linear algebra
Preconditioner
Iterative method
Biconjugate gradient stabilized method
Conjugate gradient method
Cholesky decomposition
LU decomposition
Sparse matrix
Krylov subspace
Numerical linear algebra
Numerical analysis
Algebra

Incomplete-LU and Cholesky Preconditioned Iterative Methods Using cuSPARSE and cuBLAS

Add to Reading List

Source URL: docs.nvidia.com

Download Document from Source Website

File Size: 1,63 MB

Share Document on Facebook

Similar Documents

Computing Cylindrical Algebraic Decomposition via Triangular Decomposition Changbo Chen, Marc Moreno Maza, Bican Xia and Lu Yang University of Western Ontario, Canada Massachusetts Institute of Technology, USA

DocID: 1sFov - View Document

Mathematics / Algebra / Linear algebra / Numerical linear algebra / Matrices / Arithmetic / Elementary algebra / Factorization / Determinant / LU decomposition / Matrix / Gaussian elimination

FCS-0190-WenqinZHOU 1..13

DocID: 1riKn - View Document

Algebra / Linear algebra / Mathematics / Matrix theory / Matrices / Numerical linear algebra / Matrix / Rank / LU decomposition / Quaternionic matrix

Fast Monte-Carlo Algorithms for Matrix Multiplication

DocID: 1rcLH - View Document

Numerical linear algebra / Numerical analysis / Algebra / Software / Numerical software / Basic Linear Algebra Subprograms / Comparison of linear algebra libraries / LAPACK / Magma / Matrix / LU decomposition / Preconditioner

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that developed LAPACK a

DocID: 1r9v4 - View Document