<--- Back to Details
First PageDocument Content
Privacy / Anonymity / Data protection / Information privacy / Data management / Pseudonymization / Data anonymization / De-anonymization / Internet privacy / Big data / Personally identifiable information / Data mining
Date: 2016-02-10 12:22:47
Privacy
Anonymity
Data protection
Information privacy
Data management
Pseudonymization
Data anonymization
De-anonymization
Internet privacy
Big data
Personally identifiable information
Data mining

Microsoft PowerPoint - BigDataWinterSchool-Part2

Add to Reading List

Source URL: dbs.uni-leipzig.de

Download Document from Source Website

File Size: 1,29 MB

Share Document on Facebook

Similar Documents

Anonymization of statistical data S. De Capitani di Vimercati, S. Foresti, G. Livraga, P. Samarati DTI, University of Milan, Italy Abstract.

DocID: 1uASe - View Document

Interactive Anonymization of Sensitive Data Xiaokui Xiao, Guozhang Wang, Johannes Gehrke Department of Computer Science Cornell University Ithaca, New York {xiaokui, guoz, johannes}@cs.cornell.edu

DocID: 1skcc - View Document

Information privacy / Knowledge / Information / Health / Data protection / Research ethics / Anonymity / Electronic health records / De-identification / Protected health information / Pseudonymization / Data anonymization

Data De-identification and Anonymization of Individual Patient Data in Clinical Studies – A Model Approach Background TransCelerate BioPharma Inc. is a non-profit organization of biopharmaceutical companies focused on

DocID: 1rijq - View Document

Anonymity / Privacy / Information / Statistics / Knowledge / Categorical data / Multivariate statistics / Dimension reduction / K-anonymity / Data anonymization / Mosaic plot / Contingency table

STATISTICAL DISCLOSURE CONTROL FOR MICRODATA: A PRACTICE G UIDE THIJS BENSCHOP CATHRINE MACHINGAUTA MATTHEW WELCH July 2016 Version 1.1

DocID: 1qVmn - View Document

Cryptography / Ciphertext indistinguishability / Chosen-ciphertext attack / Adaptive chosen-ciphertext attack / Ciphertext / Secure multi-party computation / Cryptosystem / Data anonymization / ElGamal encryption

Efficient Anonymity-Preserving Data Collection Justin Brickell and Vitaly Shmatikov Department of Computer Sciences The University of Texas at Austin Austin, TX, USA

DocID: 1qCnF - View Document