<--- Back to Details
First PageDocument Content
Formal systems / Austrian nobility / Hungarian nobility / John von Neumann / David Hilbert / Axiomatic system / Axiom / Formalism / Set theory / Mathematics / Science / Logic
Date: 2003-08-26 23:55:10
Formal systems
Austrian nobility
Hungarian nobility
John von Neumann
David Hilbert
Axiomatic system
Axiom
Formalism
Set theory
Mathematics
Science
Logic

J. von Neumann’s views on mathematical and axiomatic physics

Add to Reading List

Source URL: phil.elte.hu

Download Document from Source Website

File Size: 112,49 KB

Share Document on Facebook

Similar Documents

MSC axioms MSC problems MSC001-1.p A Blind Hand Problem at(a, there, b) ⇒ ¬ at(a, here, b) cnf(clause1 , axiom) cnf(clause2 , axiom)

DocID: 1vjZG - View Document

PLA axioms PLA001-0.ax Blocks world axioms (holds(x, state) and holds(y, state)) ⇒ holds(and(x, y), state) cnf(and definition, axiom) (holds(empty, state) and holds(clear(x), state) and differ(x, table)) ⇒ holds(hol

DocID: 1vjaE - View Document

COM axioms COM001+1.ax Common axioms for progress/preservation proof ∀ve: valphaEquivalent(ve, ve) fof(’alpha-equiv-refl’, axiom) ∀ve2 , ve1 : (valphaEquivalent(ve1 , ve2 ) ⇒ valphaEquivalent(ve2 , ve1 ))

DocID: 1vaFb - View Document

PUZ axioms PUZ001-0.ax Mars and Venus axioms from mars(x) or from venus(x) cnf(from mars or venus, axiom) cnf(not from mars and venus, axiom) from mars(x) ⇒ ¬ from venus(x)

DocID: 1v5ap - View Document

MED axioms MED001+0.ax Physiology Diabetes Mellitus type 2 Physiological mechanisms of diabetes mellitus type 2 ∀x: ¬ gt(x, x) fof(irreflexivity gt, axiom)

DocID: 1v2ha - View Document