<--- Back to Details
First PageDocument Content
Mathematical analysis / Surfaces / Riemannian geometry / Darboux frame / Frenet–Serret formulas / First fundamental form / Differential geometry of surfaces / Second fundamental form / Metric tensor / Geometry / Differential geometry / Curvature
Date: 2000-12-13 11:55:25
Mathematical analysis
Surfaces
Riemannian geometry
Darboux frame
Frenet–Serret formulas
First fundamental form
Differential geometry of surfaces
Second fundamental form
Metric tensor
Geometry
Differential geometry
Curvature

Add to Reading List

Source URL: www.math.odu.edu

Download Document from Source Website

File Size: 491,93 KB

Share Document on Facebook

Similar Documents

Differential geometry of surfaces / Mathematical analysis / Differential geometry / Geometry / Surfaces / Curvature / Bernhard Riemann / Integral / Moving frame / Umbilical point / Riemann surface / GaussCodazzi equations

313 Doc. Math. J. DMV Remarks on the Darboux Transform of Isothermic Surfaces

DocID: 1rfAp - View Document

Differential geometry / Mathematical analysis / Mathematics / Geometry / Integrability conditions for differential systems / lie Cartan / Differential geometry of surfaces / MaurerCartan form / Differential equation / Darboux frame / Moving frame / Projective geometry

Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems Thomas A. Ivey and J.M. Landsberg Contents

DocID: 1r8Uz - View Document

Coordinate systems / Polar coordinate system / Darboux frame / Trigonometric functions / Mathematical analysis / Geometry / Differential geometry

The Principal Curvatures On a Surface E. L. Lady notation: α(t) is a curve on a surface S. 0

DocID: 18MQI - View Document

Differential geometry of surfaces / Curvature / Group theory / Linear algebra / Vector space / Darboux frame / Linear temporal logic / Algebra / Mathematics / Differential geometry

surfaces of revolution E. L. Lady Start with a curve given parametriclly in the xz -plane, viz. β(v) = (x(v), 0, z(v)) = (ϕ(v), 0, ψ(v)). Revolving this curve around the z -axis yields a surface which we can describe

DocID: 17Bu6 - View Document

Surfaces / Curvature / Differential topology / Gaussian curvature / Darboux frame / Geodesic / Sphere / First fundamental form / Parametric surface / Geometry / Differential geometry / Mathematical analysis

The Isophotic Metric and its Application to Feature Sensitive Morphology on Surfaces Helmut Pottmann1 , Tibor Steiner1 , Michael Hofer1 , Christoph Haider2 , and Allan Hanbury3 1

DocID: 10Wl0 - View Document