<--- Back to Details
First PageDocument Content
Number theory / Lucas sequence / RSA / Quadratic residue / Diffie–Hellman key exchange / XTR / Schmidt–Samoa cryptosystem / Mathematics / Public-key cryptography / Abstract algebra
Date: 2003-03-04 03:30:33
Number theory
Lucas sequence
RSA
Quadratic residue
Diffie–Hellman key exchange
XTR
Schmidt–Samoa cryptosystem
Mathematics
Public-key cryptography
Abstract algebra

Add to Reading List

Source URL: www.math.ru.nl

Download Document from Source Website

File Size: 594,84 KB

Share Document on Facebook

Similar Documents

Public-key cryptography / Public key infrastructure / RSA / Schmidt-Samoa cryptosystem

Answers to Practice Questions for Exam 1 (Crypto Basics) Answer 1-Crypto: a) The three basic requirements that we discussed in class are: 1. Cryptosystem security: Roughly speaking, it must be infeasible for an eavesdrop

DocID: 1pp6I - View Document

RSA / Blum–Goldwasser cryptosystem / Schmidt–Samoa cryptosystem / Cryptography / Public-key cryptography / Electronic commerce

Reconstructing RSA Private Keys from Random Key Bits Nadia Heninger and

DocID: 1aY1O - View Document

RSA / Rabin cryptosystem / Ciphertext / Cipher / Schmidt–Samoa cryptosystem / Blum–Goldwasser cryptosystem / Cryptography / Public-key cryptography / Electronic commerce

The BlueJay Ultra-Lightweight Hybrid Cryptosystem

DocID: 1aQjp - View Document

Cipher / Mix network / RSA / Block cipher / Chosen-ciphertext attack / Key / Schmidt–Samoa cryptosystem / Blum–Goldwasser cryptosystem / Cryptography / Public-key cryptography / Electronic commerce

Appears in M. Joye (Ed.): Topics in Cryptology – CT-RSA 2003, Springer-Verlag LNCS 2612, pp. 244–262, ISBNProvably Secure Public-Key Encryption for Length-Preserving Chaumian Mixes Bodo M¨oller

DocID: 1449L - View Document

Cryptographic protocols / Electronic commerce / Computational hardness assumptions / RSA / Diffie–Hellman key exchange / Diffie–Hellman problem / Discrete logarithm / Schmidt–Samoa cryptosystem / Paillier cryptosystem / Cryptography / Public-key cryptography / Finite fields

CS255: Cryptography and Computer Security Winter 2001 Final Exam Instructions

DocID: 11BtQ - View Document