<--- Back to Details
First PageDocument Content
Cryptographic protocols / Electronic commerce / Computational hardness assumptions / RSA / Diffie–Hellman key exchange / Diffie–Hellman problem / Discrete logarithm / Schmidt–Samoa cryptosystem / Paillier cryptosystem / Cryptography / Public-key cryptography / Finite fields
Date: 2007-01-06 01:59:49
Cryptographic protocols
Electronic commerce
Computational hardness assumptions
RSA
Diffie–Hellman key exchange
Diffie–Hellman problem
Discrete logarithm
Schmidt–Samoa cryptosystem
Paillier cryptosystem
Cryptography
Public-key cryptography
Finite fields

CS255: Cryptography and Computer Security Winter 2001 Final Exam Instructions

Add to Reading List

Source URL: crypto.stanford.edu

Download Document from Source Website

File Size: 41,78 KB

Share Document on Facebook

Similar Documents

Cryptography / Public-key cryptography / Computational complexity theory / Paillier cryptosystem / Proof of knowledge / Commitment scheme / RSA / Zero-knowledge proof / Permutation / ElGamal encryption / IP

A Commitment-Consistent Proof of a Shuffle Douglas Wikstr¨om CSC KTH Stockholm, Sweden Abstract. We introduce a pre-computation technique that drastically

DocID: 1r7EK - View Document

Cryptography / Public-key cryptography / Cryptographic protocols / Secure communication / ISO standards / Ubiquitous computing / Paillier cryptosystem / EZ-Link / Homomorphic encryption / HTTPS / Internet privacy / Advanced Card Systems

Privacy-Preserving Billing for e-Ticketing Systems in Public Transportation Florian Kerschbaum Hoon Wei Lim

DocID: 1qTmM - View Document

Cryptography / Paillier cryptosystem / Homomorphic encryption / Ciphertext indistinguishability / Semantic security / Cryptosystem / RSA / Data Encryption Standard

LNCSHow to Shuffle in Public

DocID: 1qrL2 - View Document

Cryptography / Public-key cryptography / Homomorphic encryption / Secure multi-party computation / Cryptographic protocol / Paillier cryptosystem / Privacy / Digital signature / Internet privacy / Zero-knowledge proof / Encryption / Cloud computing security

Privacy-Preserving Computation (Position Paper) Florian Kerschbaum SAP Research Karlsruhe, Germany

DocID: 1qobl - View Document

Cryptography / Paillier cryptosystem / GoldwasserMicali cryptosystem / Ciphertext indistinguishability / RSA / OkamotoUchiyama cryptosystem / Cryptosystem / ElGamal encryption

LNCSOffline/Online Mixing

DocID: 1q03i - View Document