<--- Back to Details
First PageDocument Content
Matrices / Matrix theory / Data analysis / Singular value decomposition / Numerical linear algebra / Principal component analysis / Covariance matrix / Symmetric matrix / Eigenvalues and eigenvectors / Algebra / Linear algebra / Mathematics
Date: 2013-11-27 15:34:16
Matrices
Matrix theory
Data analysis
Singular value decomposition
Numerical linear algebra
Principal component analysis
Covariance matrix
Symmetric matrix
Eigenvalues and eigenvectors
Algebra
Linear algebra
Mathematics

Matrix LET Subcommands VARIANCE-COVARIANCE MATRIX VARIANCE-COVARIANCE MATRIX PURPOSE

Add to Reading List

Source URL: www.itl.nist.gov

Download Document from Source Website

File Size: 28,08 KB

Share Document on Facebook

Similar Documents

Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 1 The Singular Value Decomposition Instructor: Sham Kakade

DocID: 1vbS6 - View Document

Sampling Algorithms to Update Truncated SVD Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra University of Tennessee, Knoxville, Tennessee, U.S.A. Abstract— A truncated singular value decomposition (SVD) is a powe

DocID: 1udU9 - View Document

Orthogonal Matrices and the Singular Value Decomposition Carlo Tomasi The first Section below extends to m × n matrices the results on orthogonality and projection we have previously seen for vectors. The Sections there

DocID: 1tr0F - View Document

Using Singular Value Decomposition to Parameterize State-Dependent Model Errors Christopher M. Danforth∗ Department of Mathematics and Statistics, University of Vermont Burlington, VTEugenia Kalnay

DocID: 1tjbW - View Document

CS168: The Modern Algorithmic Toolbox Lecture #9: The Singular Value Decomposition (SVD) and Low-Rank Matrix Approximations Tim Roughgarden & Gregory Valiant∗ April 25, 2016

DocID: 1rHEk - View Document