<--- Back to Details
First PageDocument Content
Quantum information science / Quantum computing / Stabilizer code / Quantum error correction / Toric code / Quantum circuit / Qubit / Quantum convolutional code / Entanglement-assisted stabilizer formalism
Date: 2014-12-19 04:03:41
Quantum information science
Quantum computing
Stabilizer code
Quantum error correction
Toric code
Quantum circuit
Qubit
Quantum convolutional code
Entanglement-assisted stabilizer formalism

Sparse Quantum Codes from Quantum Circuits Steve Flammia QECDecember 2014

Add to Reading List

Source URL: www.qec14.ethz.ch

Download Document from Source Website

File Size: 1,34 MB

Share Document on Facebook

Similar Documents

Quantum information science / Theoretical computer science / Quantum computing / Quantum mechanics / Fault-tolerant computer systems / Quantum error correction / Toric code / Decoding methods / Error detection and correction / Stabilizer code / Entanglement-assisted stabilizer formalism

Maximum Likelihood Decoding in the Surface Code Sergey Bravyi IBM Watson Research Center

DocID: 1pVvD - View Document

Quantum information science / Quantum computing / Stabilizer code / Quantum error correction / Toric code / Quantum circuit / Qubit / Quantum convolutional code / Entanglement-assisted stabilizer formalism

Sparse Quantum Codes from Quantum Circuits Steve Flammia QECDecember 2014

DocID: 1pKde - View Document

Quantum information science / Quantum mechanics / Linear algebra / Quantum computing / Quantum error correction / Hilbert space / Quantum channel / Density matrix / Stabilizer code / Entanglement-assisted stabilizer formalism

Quantum Error Correcting Codes: An introduction Piyush P Kurur Department of Computer Science and Engineering Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India email: ∗

DocID: 1p1Iw - View Document

Quantum information science / Quantum error correction / Quantum computing / Quantum gate / Qubit / Toric code / Superconducting quantum computing / Entanglement-assisted stabilizer formalism / Trapped ion quantum computer

Scalable in-situ qubit calibration during repetitive error detection J. Kelly,1 R. Barends,1 A. G. Fowler,1 A. Megrant,1 E. Jeffrey,1 T. C. White,1 D. Sank,1 J. Y. Mutus,1 B. Campbell,2 Yu Chen,1 Z. Chen,2 B. Chiaro,2 A.

DocID: 1oSSu - View Document

Applied mathematics / Controlled NOT gate / Quantum gate / Qubit / Quantum computer / Loss–DiVincenzo quantum computer / Entanglement-assisted stabilizer formalism / Quantum information science / Theoretical computer science / Quantum mechanics

PHYSICAL REVIEW A 81, Controlled-NOT gate with weakly coupled qubits: Dependence of fidelity on the form of interaction Joydip Ghosh* and Michael R. Geller† Department of Physics and Astronomy, Universit

DocID: 1a6NR - View Document