<--- Back to Details
First PageDocument Content
Bayesian statistics / Kullback–Leibler divergence / Thermodynamics / Normal distribution / Principle of maximum entropy / Convex optimization / Expectation–maximization algorithm / Entropy / Maximum entropy probability distribution / Statistics / Probability and statistics / Statistical theory
Date: 2015-02-17 20:52:05
Bayesian statistics
Kullback–Leibler divergence
Thermodynamics
Normal distribution
Principle of maximum entropy
Convex optimization
Expectation–maximization algorithm
Entropy
Maximum entropy probability distribution
Statistics
Probability and statistics
Statistical theory

STAT 538 Lecture 8 Maximum Entropy Models c Marina Meil˘a

Add to Reading List

Source URL: www.stat.washington.edu

Download Document from Source Website

File Size: 238,23 KB

Share Document on Facebook

Similar Documents

? Objective Bayesianism and the Maximum Entropy Principle ? Jürgen Landes and Jon Williamson Draft of September 3, 2013

DocID: 1uhJm - View Document

Military medicine / Statistical theory / Statistics / Walter Reed Biosystematics Unit / Walter Reed Army Institute of Research / Walter Reed / Principle of maximum entropy

Habitat suitability of the sand fly: Nyssomyia whitmani 60° W 55° W 50° W

DocID: 1rrRB - View Document

Statistical theory / Statistics / Walter Reed Biosystematics Unit / Walter Reed Army Institute of Research / Principle of maximum entropy

Habitat suitability of the mosquito: Culex tarsalis 115° W 110° W 105° W

DocID: 1rmXU - View Document

Military medicine / Statistical theory / Statistics / Walter Reed Biosystematics Unit / Walter Reed Army Institute of Research / Walter Reed / Principle of maximum entropy

Habitat suitability of the sand fly: Sciopemyia sordellii 60° W 55° W 50° W

DocID: 1rlKr - View Document

Statistics / Physics / Probability / Statistical theory / Thermodynamic entropy / Information theory / Philosophy of thermal and statistical physics / Randomness / Entropy / Principle of maximum entropy / KullbackLeibler divergence / Maximum entropy probability distribution

Entropy 2013, 15, ; doi:e15083209 OPEN ACCESS entropy ISSNwww.mdpi.com/journal/entropy

DocID: 1rhfy - View Document