<--- Back to Details
First PageDocument Content
Voronoi diagram / Triangulation / Discrete geometry / Computational complexity theory / Combinatorics / Algorithm / Delaunay triangulation / Convex hull / Sweep line algorithm / Geometry / Mathematics / Computational geometry
Date: 2002-06-26 10:36:36
Voronoi diagram
Triangulation
Discrete geometry
Computational complexity theory
Combinatorics
Algorithm
Delaunay triangulation
Convex hull
Sweep line algorithm
Geometry
Mathematics
Computational geometry

Add to Reading List

Source URL: www.cs.princeton.edu

Download Document from Source Website

File Size: 175,31 KB

Share Document on Facebook

Similar Documents

Flip-Flop: Convex Hull Construction via Star-Shaped Polyhedron in 3D

DocID: 1tNUv - View Document

Flip- Flop : Convex Hull Construction via Star-Shaped Polyhedron in 3D Mingcen Gao Thanh-Tung Cao Tiow-Seng Tan

DocID: 1tLDX - View Document

2016 29th SIBGRAPI Conference on Graphics, Patterns and Images Convex Hull for Probabilistic Points F. Betul Atalay Sorelle A. Friedler

DocID: 1tI0s - View Document

Riemann surfaces

Inverse Problems–1052. Printed in the UK PII: S0266Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements

DocID: 1rpLW - View Document

Computer science / Geometry / Computing / Computational geometry / Triangulation / Delaunay triangulation / Kinetic data structure / John Hershberger / Convex hull / Voronoi diagram / Leonidas J. Guibas / Closest pair of points problem

Kinetic Data Structures: Animating Proofs Through Time Julien Basch∗ Jo˜ao Comba† Leonidas J. Guibas‡ John Hershberger§ Craig D. Silverstein¶ Li Zhangk When motion begins, each certificate remains valid until th

DocID: 1rmpv - View Document