Convex

Results: 2611



#Item
821

Technical Report TTIC-TRSeptember 2009 Convex Games in Banach Spaces Karthik Sridharan

Add to Reading List

Source URL: www.ttic.edu

Language: English - Date: 2012-09-18 12:01:31
    822

    Large-Margin Convex Polytope Machine Alex Kantchelian Michael Carl Tschantz Ling Huang† Peter L. Bartlett Anthony D. Joseph J. D. Tygar UC Berkeley – {akant|mct|bartlett|adj|tygar}@cs.berkeley.edu †

    Add to Reading List

    Source URL: papers.nips.cc

    Language: English - Date: 2015-01-31 22:49:22
      823

      Single-Ballot Risk-Limiting Audits Using Convex Optimization Stephen Checkoway UC San Diego Anand Sarwate UC San Diego

      Add to Reading List

      Source URL: www.usenix.org

      Language: English
        824

        Convex Optimization & Machine Learning Introduction to Optimization CO&ML

        Add to Reading List

        Source URL: www.iip.ist.i.kyoto-u.ac.jp

        Language: English - Date: 2011-10-21 02:36:31
          825

          CONVEX OPTIMIZATION FOR TENSOR DECOMPOSITION Ryota Tomioka1 Department of Mathematical Informatics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, , JAPAN, 1

          Add to Reading List

          Source URL: www.me.inf.kyushu-u.ac.jp

          Language: English - Date: 2013-08-06 20:50:16
            826

            Clusterpath: an algorithm for clustering using convex fusion penalties Toby Dylan Hocking http://cbio.ensmp.fr/~thocking/ joint work with Armand Joulin, Francis Bach, and Jean-Philippe Vert

            Add to Reading List

            Source URL: sugiyama-www.cs.titech.ac.jp

            Language: English - Date: 2013-11-29 04:10:49
              827

              Independent Set of Intersection Graphs of Convex Objects in 2D Pankaj K. Agarwal Nabil H. Mustafa

              Add to Reading List

              Source URL: sma.epfl.ch

              Language: English - Date: 2010-12-09 15:56:26
                828

                A SSIGNMENT 1 C OURSE : CPS234 Due Date: October 6, 2005 Problem 1: (i) Let P = hp0 , . . . , pn−1 i and Q = hq0 , . . . , qn−1 i be two nonintersecting convex

                Add to Reading List

                Source URL: www.cs.duke.edu

                Language: English - Date: 2005-09-21 20:01:20
                  829

                  ORF 522 Linear Programming and Convex Analysis Financial Applications Marco Cuturi

                  Add to Reading List

                  Source URL: www.iip.ist.i.kyoto-u.ac.jp

                  Language: English - Date: 2011-02-24 02:20:08
                    830

                    ORF 522 Linear Programming and Convex Analysis Duality Marco Cuturi

                    Add to Reading List

                    Source URL: www.iip.ist.i.kyoto-u.ac.jp

                    Language: English - Date: 2010-09-16 03:03:05
                      UPDATE