<--- Back to Details
First PageDocument Content
Association rule learning / Theoretical computer science / Information / Categorical data / Data / Apriori algorithm / Contingency table / Algorithm / Data mining / Data analysis / Data management
Date: 2010-01-03 16:30:45
Association rule learning
Theoretical computer science
Information
Categorical data
Data
Apriori algorithm
Contingency table
Algorithm
Data mining
Data analysis
Data management

Microsoft Word - ICMLA_T.doc

Add to Reading List

Source URL: www.lon-capa.org

Download Document from Source Website

File Size: 214,99 KB

Share Document on Facebook

Similar Documents

Estimating Uncertainty of Categorical Web Data Davide Ceolin, Willem Robert van Hage, Wan Fokkink, Guus Schreiber VU University Amsterdam

DocID: 1v5tG - View Document

Clustering and Model Selection via Penalized Likelihood for Different-sized Categorical Data Vectors Esther Derman∗1 and Erwan Le Pennec† 1 1 CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128, Palaise

DocID: 1u9C7 - View Document

How to Effectively Combine Numerical Features and Categorical Features June 14th, 2017 Liangjie Hong Head of Data Science, Etsy Inc.

DocID: 1tJHG - View Document

Data Min Knowl Disc:130–173 DOIs10618Summarizing categorical data by clustering attributes Michael Mampaey · Jilles Vreeken

DocID: 1srCH - View Document

Recent Advances in Categorical Data Analysis Maura E. Stokes SAS Institute Inc. Cary, North Carolina, USA Abstract

DocID: 1rYdd - View Document