<--- Back to Details
First PageDocument Content
Computability theory / Complexity classes / Urelements / Z notation / S / Naive set theory / Constructible universe / Arithmetical hierarchy / Axiom of extensionality / Mathematical logic / Mathematics / Set theory
Date: 2009-09-06 21:19:38
Computability theory
Complexity classes
Urelements
Z notation
S
Naive set theory
Constructible universe
Arithmetical hierarchy
Axiom of extensionality
Mathematical logic
Mathematics
Set theory

THE ITERATIVE CONCEPTION OF SET

Add to Reading List

Source URL: www.pgrim.org

Download Document from Source Website

File Size: 100,43 KB

Share Document on Facebook

Similar Documents

Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / S / Constructible universe / Zermelo set theory / Naive set theory / Axiom of empty set / Mathematical logic / Set theory / Mathematics

Basic set theory Richard Pettigrew January 26, 2012 1

DocID: Qu0M - View Document

Computability theory / Complexity classes / Urelements / Z notation / S / Naive set theory / Constructible universe / Arithmetical hierarchy / Axiom of extensionality / Mathematical logic / Mathematics / Set theory

THE ITERATIVE CONCEPTION OF SET

DocID: OCnw - View Document

Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / Constructible universe / Axiom of choice / First-order logic / Axiom / Function / Mathematical logic / Logic / Mathematics

A New System of Axioms Instead of ZF (ver[removed]Use a Latin font such as Times New Roman, please.] [If not word-wrapped, see "Word-wrap" of HELP in your software.]

DocID: 5yHq - View Document

Axioms of set theory / Z notation / Urelements / Self-reference / Zermelo–Fraenkel set theory / S / Axiom of choice / New Foundations / Axiom of regularity / Mathematical logic / Set theory / Mathematics

Nonstandard Set Theories and Information Management VAROL AKMAN

DocID: 3WfL - View Document

Urelements / Z notation / New Foundations / Type theory / Willard Van Orman Quine / Zermelo–Fraenkel set theory / Axiom of choice / Zermelo set theory / S / Mathematical logic / Set theory / Mathematics

Proof, Sets, and Logic M. Randall Holmes November 30, 2012

DocID: 2Krn - View Document