<--- Back to Details
First PageDocument Content
Public-key cryptography / Computer arithmetic / Electronic commerce / RSA / Paillier cryptosystem / Modular exponentiation / Exponentiation by squaring / Chinese remainder theorem / Montgomery reduction / Cryptography / Mathematics / Modular arithmetic
Date: 2012-06-05 18:18:05
Public-key cryptography
Computer arithmetic
Electronic commerce
RSA
Paillier cryptosystem
Modular exponentiation
Exponentiation by squaring
Chinese remainder theorem
Montgomery reduction
Cryptography
Mathematics
Modular arithmetic

A Method for Preventing "Skipping" Attacks

Add to Reading List

Source URL: ieee-security.org

Download Document from Source Website

File Size: 380,29 KB

Share Document on Facebook

Similar Documents

Cryptography / Public-key cryptography / Computational complexity theory / Paillier cryptosystem / Proof of knowledge / Commitment scheme / RSA / Zero-knowledge proof / Permutation / ElGamal encryption / IP

A Commitment-Consistent Proof of a Shuffle Douglas Wikstr¨om CSC KTH Stockholm, Sweden Abstract. We introduce a pre-computation technique that drastically

DocID: 1r7EK - View Document

Cryptography / Public-key cryptography / Cryptographic protocols / Secure communication / ISO standards / Ubiquitous computing / Paillier cryptosystem / EZ-Link / Homomorphic encryption / HTTPS / Internet privacy / Advanced Card Systems

Privacy-Preserving Billing for e-Ticketing Systems in Public Transportation Florian Kerschbaum Hoon Wei Lim

DocID: 1qTmM - View Document

Cryptography / Paillier cryptosystem / Homomorphic encryption / Ciphertext indistinguishability / Semantic security / Cryptosystem / RSA / Data Encryption Standard

LNCSHow to Shuffle in Public

DocID: 1qrL2 - View Document

Cryptography / Public-key cryptography / Homomorphic encryption / Secure multi-party computation / Cryptographic protocol / Paillier cryptosystem / Privacy / Digital signature / Internet privacy / Zero-knowledge proof / Encryption / Cloud computing security

Privacy-Preserving Computation (Position Paper) Florian Kerschbaum SAP Research Karlsruhe, Germany

DocID: 1qobl - View Document

Cryptography / Paillier cryptosystem / GoldwasserMicali cryptosystem / Ciphertext indistinguishability / RSA / OkamotoUchiyama cryptosystem / Cryptosystem / ElGamal encryption

LNCSOffline/Online Mixing

DocID: 1q03i - View Document