<--- Back to Details
First PageDocument Content
Solid mechanics / 3D computer graphics / Deformation / Plasticity / Shape / Shortest path problem / Skeletal animation / Biharmonic equation
Date: 2012-08-02 16:30:46
Solid mechanics
3D computer graphics
Deformation
Plasticity
Shape
Shortest path problem
Skeletal animation
Biharmonic equation

Bounded Biharmonic Weights for Real-Time Deformation

Add to Reading List

Source URL: igl.ethz.ch

Download Document from Source Website

File Size: 828,11 KB

Share Document on Facebook

Similar Documents

Solid mechanics / 3D computer graphics / Deformation / Plasticity / Shape / Shortest path problem / Skeletal animation / Biharmonic equation

Bounded Biharmonic Weights for Real-Time Deformation

DocID: 1pKDD - View Document

Differential equations / Numerical analysis / Multivariable calculus / Partial differential equation / Wave equation / Adomian decomposition method / Biharmonic equation / Spectral method / Adomian / Calculus / Mathematical analysis / Mathematics

Int. J. Simulation and Process Modelling, Vol. 2, Nos. 1/2, The decomposition method for one dimensional biharmonic equations

DocID: 12BCK - View Document

Multivariate interpolation / Mathematical analysis / Applied mathematics / Bicubic interpolation / Image processing / Cubic Hermite spline / Spline interpolation / Spline / Biharmonic equation / Interpolation / Splines / Computer graphics

GEOPHYSICALRESEARCHLETTERS, VOL. 14, NO. 2, PAGES[removed], BIHARMONIC SPLINE INTERPOLATION

DocID: 111Ru - View Document

Logical syntax / Philosophical logic / Philosophy of language / Theorems / Biharmonic equation / Harmonic function / Hindawi Publishing Corporation / Logic / Mathematics / Logical consequence

Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID[removed], 7 pages http://dx.doi.org[removed][removed]Research Article

DocID: RpEe - View Document

Group theory / Vector space / Vectors / Algebra / Mathematics / Linear algebra

Finite strip method for biharmonic equation Ivan Lirkov and Svetozar Margenov

DocID: 2XAS - View Document