<--- Back to Details
First PageDocument Content
Fuzzy logic / Artificial intelligence / Logic in computer science / Systems scientists / Lotfi A. Zadeh / Kathmandu / Boolean algebra / Fuzzy concept
Date: 2015-11-10 06:43:07
Fuzzy logic
Artificial intelligence
Logic in computer science
Systems scientists
Lotfi A. Zadeh
Kathmandu
Boolean algebra
Fuzzy concept

Microsoft Word - 2015_11_19_jha_abstract.docx

Add to Reading List

Source URL: irafm.osu.cz

Download Document from Source Website

File Size: 22,03 KB

Share Document on Facebook

Similar Documents

Algebra Universalis, + 0.20/0 (~ 1995 BirkhS.user Verlag, Basel Adjoining units to residuated Boolean algebras

DocID: 1v8wA - View Document

American Computer Science League Flyer Solutions 1. Boolean Algebra ( A  B) ( AB  BC ) = A B ( AB  BC ) = AA B  A BB C  0  0  0

DocID: 1uZJ8 - View Document

Visualising the Boolean Algebra IB4 in 3D Hans Smessaert & Lorenz Demey KU Leuven, Belgium Rhombic Dodecahedron (RDH) LOGICAL GEOMETRY

DocID: 1up5i - View Document

BOO axioms BOO001-0.ax Ternary Boolean algebra (equality) axioms m(m(v, w, x), y, m(v, w, z)) = m(v, w, m(x, y, z)) cnf(associativity, axiom) m(y, x, x) = x cnf(ternary multiply1 , axiom)

DocID: 1u9q0 - View Document

Theoretical computer science / Mathematics / Computational complexity theory / Operations research / Logic in computer science / Mathematical optimization / NP-complete problems / Boolean algebra / Maximum satisfiability problem / Boolean satisfiability problem / Constraint satisfaction / Solver

On Solving Boolean Multilevel Optimization Problems∗ Josep Argelich INESC-ID Lisbon

DocID: 1rsZm - View Document