<--- Back to Details
First PageDocument Content
Geometry / Mathematical structures / Alpha shape / Computational geometry / Topological space / Ordinal number / Geometric modeling / Herbert Edelsbrunner / Mathematics / Topology / General topology
Date: 2006-11-22 10:11:30
Geometry
Mathematical structures
Alpha shape
Computational geometry
Topological space
Ordinal number
Geometric modeling
Herbert Edelsbrunner
Mathematics
Topology
General topology

Computational Topology seminar

Add to Reading List

Source URL: www.mpi-inf.mpg.de

Download Document from Source Website

File Size: 1,66 MB

Share Document on Facebook

Similar Documents

SUBSPACES OF PSEUDORADIAL SPACES Martin Sleziak Abstract. We prove that every topological space (T0 -space, T1 -space) can be embedded in a pseudoradial space (in a pseudoradial T0 -space, T1 -space). This

DocID: 1uFSH - View Document

The étale fundamental group Wouter Zomervrucht, December 9, Topology Let X be a connected topological space. Let x ∈ X be a point. An important invariant of ( X, x ) is the (topological) fundamental group

DocID: 1tfA0 - View Document

TOPOLOGICAL CRYSTALS JOHN C. BAEZ Abstract. Sunada’s work on topological crystallography emphasizes the role of the ‘maximal abelian cover’ of a graph X. This is a covering space of X for which the group of deck tr

DocID: 1t23O - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rsVn - View Document

Mathematical analysis / Mathematics / Algebra / Sobolev spaces / Differential forms / Connection / Integration on manifolds / Manifolds / Differentiable manifold / Volume form / Topological manifold / Vector space

161 Documenta Math. Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains

DocID: 1rr2b - View Document