<--- Back to Details
First PageDocument Content
Substitution tiling / Tessellation / Rauzy fractal / Substitution / Penrose tiling / Aperiodic tiling / Tiling / Geometry / Ammann–Beenker tiling
Date: 2005-10-23 19:00:00
Substitution tiling
Tessellation
Rauzy fractal
Substitution
Penrose tiling
Aperiodic tiling
Tiling
Geometry
Ammann–Beenker tiling

Discrete Comput Geom OF1–OF14DOI: s00454Discrete & Computational Geometry

Add to Reading List

Source URL: www.mathematicians.org.uk

Download Document from Source Website

File Size: 925,06 KB

Share Document on Facebook

Similar Documents

Substitution tiling / Tessellation / Rauzy fractal / Substitution / Penrose tiling / Aperiodic tiling / Tiling / Geometry / Ammann–Beenker tiling

Discrete Comput Geom OF1–OF14DOI: s00454Discrete & Computational Geometry

DocID: 19DF9 - View Document

Aperiodic tiling / Tessellation / Prototile / Ammann–Beenker tiling / Penrose tiling / Tiling / Geometry / Substitution tiling

Canonical Substitution Tilings E O HARRISS and J S W LAMB xpand E

DocID: 19uSb - View Document

Substitution tiling / Tessellation / Polytope / Integration by substitution / Aperiodic tiling / Ammann–Beenker tiling / Tiling / Geometry / Penrose tiling

On Canonical Substitution Tilings Edmund O Harriss Department of Mathematics Imperial College, London 180 Queen’s Gate, London SW7 2AZ United Kingdom

DocID: 199uC - View Document

Algebraic topology / Homotopy theory / Maps of manifolds / Tiling / Attractor / Homotopy / Tessellation / Substitution tiling / Homeomorphism / Topology / Mathematics / Abstract algebra

New York Journal of Mathematics New York J. Math[removed]–796. Tiling spaces, codimension one attractors and shape Alex Clark and John Hunton

DocID: ym7S - View Document

Algebraic topology / Homotopy theory / Maps of manifolds / Tiling / Attractor / Homotopy / Tessellation / Substitution tiling / Homeomorphism / Topology / Mathematics / Abstract algebra

New York Journal of Mathematics New York J. Math[removed]–796. Tiling spaces, codimension one attractors and shape Alex Clark and John Hunton

DocID: yjdW - View Document