<--- Back to Details
First PageDocument Content
Computational fluid dynamics / Numerical analysis / Partial differential equations / Multivariable calculus / Finite difference method / Differential equation / Heat equation / Wave equation / Finite difference / Calculus / Mathematical analysis / Mathematics
Date: 2014-12-04 10:47:19
Computational fluid dynamics
Numerical analysis
Partial differential equations
Multivariable calculus
Finite difference method
Differential equation
Heat equation
Wave equation
Finite difference
Calculus
Mathematical analysis
Mathematics

Finite differences (cont.)

Add to Reading List

Source URL: ocw.mit.edu

Download Document from Source Website

File Size: 1,64 MB

Share Document on Facebook

Similar Documents

Classroom Voting Questions: Multivariable Calculus 15.2 Optimization 1. Estimate the global maximum and minimum of the functions whose level curves are given below. How many times does each occur?

DocID: 1vnbq - View Document

Classroom Voting Questions: Multivariable Calculus 14.4 Gradients and Directional Derivatives in the Plane 1. The figure shows the temperature T ◦ C in a heated room as a function of distance x in meters along a wall a

DocID: 1vl96 - View Document

Classroom Voting Questions: Multivariable Calculus 14.7 Second-Order Partial Derivatives 1. At the point (4,0), what is true of the second partial derivatives of f (x, y)? (a)

DocID: 1vjCI - View Document

Classroom Voting Questions: Multivariable Calculus 12.4 Linear Functions 1. A plane has a z-intercept of 3, a slope of 2 in the x direction, and a slope of -4 in the y direction. The height of the plane at (2,3) is (a)

DocID: 1vfMK - View Document

Classroom Voting Questions: Multivariable Calculus 18.4 Path-Dependent Vector Fields and Green’s Theorem 1. What will guarantee that F~ (x, y) = yˆi + g(x, y)ˆj is not a gradient vector field? (a) g(x, y) is a functi

DocID: 1v8ZZ - View Document