<--- Back to Details
First PageDocument Content
Mathematics / Computer science / Recursively enumerable set / Turing reduction / Computable function / Recursive set / Turing degree / Computability / Numbering / Computability theory / Theoretical computer science / Theory of computation
Date: 2006-10-06 14:59:22
Mathematics
Computer science
Recursively enumerable set
Turing reduction
Computable function
Recursive set
Turing degree
Computability
Numbering
Computability theory
Theoretical computer science
Theory of computation

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 73,53 KB

Share Document on Facebook

Similar Documents

arXiv:1512.03024v2 [cs.LO] 8 DecComparing representations for function spaces in computable analysis Arno Pauly

DocID: 1sRZe - View Document

Mathematical logic / Software engineering / Theoretical computer science / Type theory / Computability theory / Logic in computer science / Proof assistants / Logic for Computable Functions / HOL / Lambda calculus / Primitive recursive function / Recursion

A brief introduction to Higher Order Logic and the HOL proof assistant Monica Nesi

DocID: 1rjEK - View Document

Mathematical analysis / Computability theory / Mathematics / Theory of computation / Theoretical computer science / Martingale theory / Stochastic processes / Kakeya set / Real analysis / Computable function / Martingale / Computable number

Lines Missing Every Random Point∗ Jack H. Lutz† Neil Lutz‡ Abstract

DocID: 1qlxM - View Document

Computability theory / Theoretical computer science / Theory of computation / Mathematics / Mathematical logic / Turing machine / Models of computation / Computable number / Alan Turing / Computable function / Definable real number / Computability

PDF Document

DocID: 1pZ37 - View Document

Mathematics / Mathematical logic / Computability theory / Logic / Theory of computation / Computable number / Structure / Computable function / Sigma-algebra

A computable axiomatisation of the topology of R and C Paul Taylor 6 August 2009

DocID: 1pMn0 - View Document