<--- Back to Details
First PageDocument Content
Mathematical logic / Mathematics / Computable function / Computable number / Computable analysis / Computable real function / Function / Utm theorem / Church–Turing thesis / Computability theory / Theoretical computer science / Theory of computation
Date: 2010-01-04 06:24:49
Mathematical logic
Mathematics
Computable function
Computable number
Computable analysis
Computable real function
Function
Utm theorem
Church–Turing thesis
Computability theory
Theoretical computer science
Theory of computation

Add to Reading List

Source URL: eccc.hpi-web.de

Download Document from Source Website

File Size: 487,34 KB

Share Document on Facebook

Similar Documents

arXiv:1512.03024v2 [cs.LO] 8 DecComparing representations for function spaces in computable analysis Arno Pauly

DocID: 1sRZe - View Document

Mathematical logic / Software engineering / Theoretical computer science / Type theory / Computability theory / Logic in computer science / Proof assistants / Logic for Computable Functions / HOL / Lambda calculus / Primitive recursive function / Recursion

A brief introduction to Higher Order Logic and the HOL proof assistant Monica Nesi

DocID: 1rjEK - View Document

Mathematical analysis / Computability theory / Mathematics / Theory of computation / Theoretical computer science / Martingale theory / Stochastic processes / Kakeya set / Real analysis / Computable function / Martingale / Computable number

Lines Missing Every Random Point∗ Jack H. Lutz† Neil Lutz‡ Abstract

DocID: 1qlxM - View Document

Computability theory / Theoretical computer science / Theory of computation / Mathematics / Mathematical logic / Turing machine / Models of computation / Computable number / Alan Turing / Computable function / Definable real number / Computability

PDF Document

DocID: 1pZ37 - View Document

Mathematics / Mathematical logic / Computability theory / Logic / Theory of computation / Computable number / Structure / Computable function / Sigma-algebra

A computable axiomatisation of the topology of R and C Paul Taylor 6 August 2009

DocID: 1pMn0 - View Document