<--- Back to Details
First PageDocument Content
Science / BLEU / SYSTRAN / Statistical machine translation / Moses / Philipp Koehn / Rule-based machine translation / Bilingual dictionary / Comparison of machine translation applications / Machine translation / Natural language processing / Linguistics
Date: 2013-10-22 08:13:23
Science
BLEU
SYSTRAN
Statistical machine translation
Moses
Philipp Koehn
Rule-based machine translation
Bilingual dictionary
Comparison of machine translation applications
Machine translation
Natural language processing
Linguistics

Can we Relearn an RBMT System?

Add to Reading List

Source URL: www.systransoft.com

Download Document from Source Website

File Size: 86,08 KB

Share Document on Facebook

Similar Documents

Computing / Computational linguistics / Linguistics / Information science / Artificial neural network / SPARQL / Semantic parsing / Word-sense disambiguation / Semantic Web / Natural language processing / Query language / Question answering

Neural Machine Translation for Query Construction and Composition Tommaso Soru 1 Edgard Marx 1 Andr´e Valdestilhas 1 Diego Esteves 2 Diego Moussallem 1 Gustavo Publio 1 Abstract Research on question answering with know

DocID: 1xU5z - View Document

Learning to Generate Pseudo-code from Source Code using Statistical Machine Translation Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura Graduate School of Infor

DocID: 1vqGB - View Document

The UMD Machine Translation Systems at IWSLT 2016: English-to-French Translation of Speech Transcripts Xing Niu, Marine Carpuat Dept. of Computer Science University of Maryland, College Park {xingniu,marine}@cs.umd.edu

DocID: 1vn4e - View Document

Learning to Translate in Real-time with Neural Machine Translation † ‡ ♦

DocID: 1viZS - View Document

Domain Adaptation in Machine Translation Cristina España-Bonet, Georg Heigold Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) 15th March, 2017 This project has received funding from the

DocID: 1vfls - View Document