<--- Back to Details
First PageDocument Content
Polynomials / Algebraic numbers / Field theory / Commutative algebra / Ring theory / Algebraic integer / Pisot–Vijayaraghavan number / Field extension / Euclidean domain / Abstract algebra / Algebra / Mathematics
Date: 2014-09-12 07:21:00
Polynomials
Algebraic numbers
Field theory
Commutative algebra
Ring theory
Algebraic integer
Pisot–Vijayaraghavan number
Field extension
Euclidean domain
Abstract algebra
Algebra
Mathematics

Add to Reading List

Source URL: media.wiley.com

Download Document from Source Website

File Size: 1,14 MB

Share Document on Facebook

Similar Documents

Annals of Mathematics, ), 547–565 On the complexity of algebraic numbers I. Expansions in integer bases By Boris Adamczewski and Yann Bugeaud

DocID: 1v1wC - View Document

Mathematics / Algebra / Abstract algebra / Algebraic number theory / Ring theory / Elementary number theory / Integer / NP / Number

Task Description IOI 2000 Beijing China POST

DocID: 1rlEJ - View Document

Mathematics / Elementary mathematics / Algebraic number theory / Elementary number theory / Integer / Ring theory / NP

4th round, December 19th , 2015 COCITASK

DocID: 1rhDq - View Document

Mathematics / Algebra / Abstract algebra / Elementary mathematics / Algebraic number theory / Elementary number theory / Integer / Ring theory / Sequence

Putnam Σ.8 Po-Shen Loh 14 October

DocID: 1rf8b - View Document

Mathematics / Integer sequences / Field theory / Number theory / Constructible universe / Elliptic divisibility sequence / Sequence / Splitting field / Divisibility sequence

711 Documenta Math. Divisibility Sequences and Powers of Algebraic Integers

DocID: 1rbnC - View Document