First Page | Document Content | |
---|---|---|
![]() Date: 2004-01-05 10:49:21Algebraic structures Commutative algebra Ring Ideal Prime ideal Commutative ring Subring Principal ideal Quotient ring Abstract algebra Algebra Ring theory | Source URL: faculty.atu.eduDownload Document from Source WebsiteFile Size: 83,78 KBShare Document on Facebook |
![]() | Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung ¨ ndet 1996 GegruDocID: 1qnG0 - View Document |
![]() | 1 Documenta Math. Convexity, Valuations ¨ fer Extensions in Real AlgebraDocID: 1qhY3 - View Document |
![]() | 171 Documenta Math. Power Reductivity over an Arbitrary Base ` Andr´DocID: 1pfob - View Document |
![]() | CHAPTER 1 Basic Idealizers This chapter introduces the idealizer subring IS (A) of a right ideal A in a ring S. Its main aim is to investigate, in §4 and §5, the ‘basic idealizer’ case — when A is not two-sidedDocID: RrSm - View Document |
![]() | Solutions to Problems Chapter 1 Section[removed]Multiply the equation by an−1 to get a−1 = −(cn−1 + · · · + c1 an−2 + c0 an−1 ) ∈ A. 2. Since A[b] is a subring of B, it is an integral domain. Thus if bz =DocID: ypbh - View Document |