<--- Back to Details
First PageDocument Content
Convolution / Finite difference / Fourier transform / Laplace operator / Color constancy / Discrete Laplace operator / Heat equation / Mathematical analysis / Mathematics / Fourier analysis
Date: 2004-09-19 13:45:58
Convolution
Finite difference
Fourier transform
Laplace operator
Color constancy
Discrete Laplace operator
Heat equation
Mathematical analysis
Mathematics
Fourier analysis

Determining Lightness from an Image

Add to Reading List

Source URL: people.csail.mit.edu

Download Document from Source Website

File Size: 1,10 MB

Share Document on Facebook

Similar Documents

Discrete Comput Geom: 740–756 DOIs00454A Discrete Laplace–Beltrami Operator for Simplicial Surfaces Alexander I. Bobenko · Boris A. Springborn

DocID: 1trJL - View Document

Fourier analysis / Laplace operator / Multivariable calculus / Shang-Hua Teng / Discrete Laplace operator

Yiannis Koutis University of Puerto Rico, Rio Piedras joint with Gary Miller, Richard Peng Carnegie Mellon University

DocID: 1pdoT - View Document

Graph theory / Harmonic functions / Fourier analysis / Laplace operator / Multivariable calculus / Covering graph / Graph / Logarithm / Discrete Laplace operator / Differential forms on a Riemann surface

MIMS Technical Report No) Proceedings of Symposia in Pure Mathematics Discrete Geometric Analysis Toshikazu Sunada

DocID: 1oWoZ - View Document

Differential operators / Feature detection / Image processing / Discrete Laplace operator / Graph theory / Laplace operator / LaplaceBeltrami operator / RGB color model / Lazare Kaplan International / Image segmentation / Differential geometry of surfaces / Color space

A Cotangent Laplacian for Images as Surfaces+2mm

DocID: 1oL0y - View Document

Image processing / Smoothing / Bilateral filter / Gaussian blur / Filter / Pyramid / Discrete Laplace operator / Separable filter / Gaussian filter / Deconvolution / Canny edge detector / Exponential smoothing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 6,

DocID: 1mxfl - View Document