<--- Back to Details
First PageDocument Content
Collective intelligence / Human–computer interaction / Social information processing / Collaborative filtering / Personalization / GroupLens Research / Cold start / Information science / Information retrieval / Recommender systems
Date: 2004-10-21 23:03:34
Collective intelligence
Human–computer interaction
Social information processing
Collaborative filtering
Personalization
GroupLens Research
Cold start
Information science
Information retrieval
Recommender systems

Add to Reading List

Source URL: www.grouplens.org

Download Document from Source Website

Share Document on Facebook

Similar Documents

Next-Term Student Performance Prediction: A Recommender Systems Approach∗ Mack Sweeney Computer Science George Mason University

DocID: 1vgeP - View Document

Schema-summarization in Linked-Data-based feature selection for recommender systems Azzurra Ragone1 , Paolo Tomeo2 , Corrado Magarelli2 , Tommaso Di Noia2 , Matteo Palmonari1 Andrea Maurino1 , Eugenio Di Sciascio2 1 1

DocID: 1uPCf - View Document

Information science / Humancomputer interaction / Library science / Knowledge representation / Personalization / World Wide Web / Digital library / Library / Recommender system / User modeling / Adaptation / Draft:Tourism 4.0

Personalisation and Recommender Systems in Digital Libraries Joint NSF-EU DELOS Working Group Report May 2003 Jamie Callan, Carnegie Mellon University, USA Alan Smeaton, Dublin City University, Ireland

DocID: 1tUcx - View Document

Returning is Believing: Optimizing Long-term User Engagement in Recommender Systems Qingyun Wu, Hongning Wang Liangjie Hong∗

DocID: 1tJRw - View Document

Journal of Machine Learning Research656 Submitted 3/08; Revised 11/08; Published 3/09 Scalable Collaborative Filtering Approaches for Large Recommender Systems

DocID: 1tkme - View Document