<--- Back to Details
First PageDocument Content
Algebraic surfaces / Vector bundles / Birational geometry / Differential topology / K3 surface / Ample line bundle / Enriques–Kodaira classification / Fano variety / Riemann–Roch theorem / Abstract algebra / Algebraic geometry / Geometry
Date: 1999-08-03 17:13:52
Algebraic surfaces
Vector bundles
Birational geometry
Differential topology
K3 surface
Ample line bundle
Enriques–Kodaira classification
Fano variety
Riemann–Roch theorem
Abstract algebra
Algebraic geometry
Geometry

Add to Reading List

Source URL: www.cgtp.duke.edu

Download Document from Source Website

File Size: 559,47 KB

Share Document on Facebook

Similar Documents

Birational geometry / Moduli theory / Absolute Galois group / Enriques–Kodaira classification / Moduli space / XTR / Étale cohomology / Abstract algebra / Algebra / Galois theory

ABSOLUTE GALOIS ACTS FAITHFULLY ON THE COMPONENTS OF THE MODULI SPACE OF SURFACES: A BELYI-TYPE THEOREM IN HIGHER DIMENSION ROBERT W. EASTON AND RAVI VAKIL A BSTRACT. Given an object over Q, there is often no reason for

DocID: 114tC - View Document

Moduli theory / Scheme theory / Invariant theory / Algebraic surfaces / Moduli space / Resolution of singularities / Enriques–Kodaira classification / Surface of general type / Moduli of algebraic curves / Algebraic geometry / Geometry / Abstract algebra

MURPHY’S LAW IN ALGEBRAIC GEOMETRY: BADLY-BEHAVED DEFORMATION SPACES RAVI VAKIL A BSTRACT. We consider the question: “How bad can the deformation space of an object be?” The answer seems to be: “Unless there is s

DocID: 10XTu - View Document

Characteristic classes / Algebraic geometry / Complex manifolds / Differential geometry / Calabi–Yau manifold / String theory / Enriques–Kodaira classification / Shiing-Shen Chern / Hodge theory / Topology / Geometry / Abstract algebra

 第5回代数・解析・幾何学セミナー 表記のセミナーを下記の要領で開催致しますのでご案内申し上げます. 日 時:2010年2月15日(月)∼ 18日(木

DocID: ZZLF - View Document

Abstract algebra / Birational geometry / Lie groups / Differential geometry / Enriques surface / Enriques–Kodaira classification / K3 surface / Unitary group / Orthogonal group / Algebraic geometry / Geometry / Algebraic surfaces

On the number of Enriques quotients of a K3 surface∗ Hisanori Ohashi † arXiv:0909.5358v1 [math.AG] 29 Sep 2009

DocID: RzvW - View Document

Projective geometry / Elliptic curve / Quadric / Enriques–Kodaira classification / Curve / Circle / Algebraic curve / Kummer surface / Lie sphere geometry / Geometry / Algebraic geometry / Algebraic surfaces

Picard-Einstein Metrics and Class Fields Connected with Apollonius Cycle R-P. Holzapfel with Appendices by A. Pi~neiro, N. Vladov August 17, 1998

DocID: QCs1 - View Document