<--- Back to Details
First PageDocument Content
Statistical models / Machine learning / Estimation theory / Categorical data / Latent class model / Mixture model / Maximum likelihood estimation / Errors-in-variables models / Latent variable model
Date: 2011-09-23 00:53:50
Statistical models
Machine learning
Estimation theory
Categorical data
Latent class model
Mixture model
Maximum likelihood estimation
Errors-in-variables models
Latent variable model

3rd Annual Health Econometrics Workshop

Add to Reading List

Source URL: www.healtheconometrics.org

Download Document from Source Website

File Size: 1,86 MB

Share Document on Facebook

Similar Documents

A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues arXiv:1605.06069v3 [cs.CL] 14 JunIulian V. Serban* , Alessandro Sordoni ‡ , Ryan Lowe , Laurent Charlin , Joelle Pineau ,

DocID: 1t2F1 - View Document

A Latent Variable Model of Synchronous Syntactic-Semantic Parsing for Multiple Languages Andrea Gesmundo Univ Geneva Dept Computer Sci

DocID: 1t0QV - View Document

Statistics / Probability / Statistical natural language processing / Probability distributions / Estimation theory / Regression analysis / Dynamic topic model / Latent Dirichlet allocation / Variational Bayesian methods / Mixture model / Topic model / Normal distribution

A Latent Variable Model for Geographic Lexical Variation Jacob Eisenstein Brendan O’Connor Noah A. Smith Eric P. Xing School of Computer Science Carnegie Mellon University

DocID: 1qUTR - View Document

Statistics / Statistical models / Bayesian network / Latent variable / Variational Bayesian methods / Independent component analysis / Expectationmaximization algorithm / Generative model / Principal component analysis / Bayesian inference / Normal distribution / Mixture model

Variational Bayesian Learning of Cooperative Vector Quantizer Model - The Theory  

DocID: 1qS4X - View Document

Statistics / Psychometrics / Statistical models / Educational psychology / Educational research / Psychological testing / Item response theory / Progress in International Reading Literacy Study / Latent variable / Factor analysis / Graphical model / Expectationmaximization algorithm

Hierarchical factor item response theory models for PIRLS: capturing clustering effects at multiple levels 1 Frank Rijmen

DocID: 1qFlQ - View Document