<--- Back to Details
First PageDocument Content
Polygons / Trigonometry / Bicentric quadrilateral / Triangles / Triangle geometry / Cyclic quadrilateral / Ex-tangential quadrilateral / Triangle / Circumscribed circle / Geometry / Quadrilaterals / Euclidean geometry
Date: 2012-04-04 09:31:00
Polygons
Trigonometry
Bicentric quadrilateral
Triangles
Triangle geometry
Cyclic quadrilateral
Ex-tangential quadrilateral
Triangle
Circumscribed circle
Geometry
Quadrilaterals
Euclidean geometry

Add to Reading List

Source URL: forumgeom.fau.edu

Download Document from Source Website

File Size: 32,80 KB

Share Document on Facebook

Similar Documents

Isosceles trapezoid / Parallelogram / Rectangle / Rhombus / Triangle / Cyclic quadrilateral / Bicentric quadrilateral / Geometry / Quadrilaterals / Trapezoid

1. Given: a  b , b  c Prove: a  c Guidance: Draw a line which intersects with all three lines.

DocID: 1avjI - View Document

Trapezoid / Rectangle / Parallelogram / Bicentric quadrilateral / Cyclic quadrilateral / Geometry / Quadrilaterals / Euclidean geometry

DayPass Up Openers 1 CST test

DocID: 18H3M - View Document

Quadrilaterals / Algebraic number theory / Elementary number theory / Integer / Ring theory / Cyclic quadrilateral / Number / 1000 / Bicentric quadrilateral / Abstract algebra / Mathematics / Algebra

International Mathematical Olympiad 2000 Hong Kong Preliminary Selection Contest 30th May, 1999. Time allowed: 3 hours

DocID: Y7Pk - View Document

Cyclic quadrilateral / Bicentric quadrilateral / Geometry / Quadrilaterals / Euclidean geometry

USA Mathematical Talent Search Solutions to Problem[removed]www.usamts.org[removed]Let ABCD be a convex quadrilateral. Let M be the midpoint of diagonal AC and N be the midpoint of diagonal BD. Let O be the

DocID: HgEd - View Document

Bicentric quadrilateral / Geometry / Quadrilaterals / Cyclic quadrilateral

USA Mathematical Talent Search Solutions to Problem[removed]www.usamts.org[removed]In convex quadrilateral ABCD, AB = CD, ∠ABC = 77◦ , and ∠BCD = 150◦ . Let P be the intersection of the perpendicular bisectors of

DocID: Haas - View Document