<--- Back to Details
First PageDocument Content
Mathematical logic / Mathematics / Computable function / Computable number / Computable analysis / Computable real function / Function / Utm theorem / Church–Turing thesis / Computability theory / Theoretical computer science / Theory of computation
Date: 2010-01-04 06:24:49
Mathematical logic
Mathematics
Computable function
Computable number
Computable analysis
Computable real function
Function
Utm theorem
Church–Turing thesis
Computability theory
Theoretical computer science
Theory of computation

Add to Reading List

Source URL: eccc.hpi-web.de

Download Document from Source Website

File Size: 487,34 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Computability theory / Mathematics / Theory of computation / Theoretical computer science / Martingale theory / Stochastic processes / Kakeya set / Real analysis / Computable function / Martingale / Computable number

Lines Missing Every Random Point∗ Jack H. Lutz† Neil Lutz‡ Abstract

DocID: 1qlxM - View Document

Computability theory / Theoretical computer science / Theory of computation / Mathematics / Mathematical logic / Turing machine / Models of computation / Computable number / Alan Turing / Computable function / Definable real number / Computability

PDF Document

DocID: 1pZ37 - View Document

Mathematics / Mathematical logic / Computability theory / Logic / Theory of computation / Computable number / Structure / Computable function / Sigma-algebra

A computable axiomatisation of the topology of R and C Paul Taylor 6 August 2009

DocID: 1pMn0 - View Document

Computability theory / Theory of computation / Mathematical logic / Models of computation / Theoretical computer science / Gdel numbering / Membrane computing / Multiset / Kurt Gdel / Computable number / Numbering / Turing machine

Microsoft Word - IBSAlgorithms.doc

DocID: 1p3sE - View Document

Theory of computation / Computability theory / Busy beaver / Computable function / Computability / Turing machine / Halting problem / Hypercomputation / Computable number / Algorithm / Alan Turing / Ackermann function

Who Can Name the Bigger Number? Scott Aaronson∗ 1999 In an old joke, two noblemen vie to name the bigger number. The first, after ruminating for hours, triumphantly announces ”Eighty-three!” The second,

DocID: 1oyBY - View Document