<--- Back to Details
First PageDocument Content
Mathematics / Structure / Dynamical systems / Chaos theory / Fractals / Bak–Tang–Wiesenfeld sandpile / Self-organized criticality / Fractal / Circle packing / Critical phenomena / Self-organization / Physics
Date: 2015-04-17 03:08:13
Mathematics
Structure
Dynamical systems
Chaos theory
Fractals
Bak–Tang–Wiesenfeld sandpile
Self-organized criticality
Fractal
Circle packing
Critical phenomena
Self-organization
Physics

One fractal quantifies another, mathematicians find

Add to Reading List

Source URL: phys.org

Download Document from Source Website

File Size: 132,24 KB

Share Document on Facebook

Similar Documents

UNIVERSITY OF LJUBLJANA Faculty of mathematics and physics Seminar Critical phenomena in polymer physics

DocID: 1ubf2 - View Document

Critical phenomena / Phase transitions / Statistics / Scaling / Transformation / Power law / Scale / Scalability / Critical exponent / Computing / Matrix / Physics

Spacetimes with semantics II (supplement)∗ On the scaling of functional spaces, from smart cities to cloud computing Mark Burgess

DocID: 1rce2 - View Document

Chemistry / Metastability / Physics / Nature / Critical phenomena / Ice / Phase transition

Metastability for interacting particle systems Frank den Hollander Leiden University, The Netherlands Minerva Lectures, Columbia University, New York,

DocID: 1r6ep - View Document

Electromagnetism / Physics / Magnetism / Condensed matter physics / Physical quantities / Critical phenomena / Magnetic refrigeration / Mukherjee / Magnetic moment / Phase transition / Paramagnetism / Magnetic field

Resume of Dr. Hariharan Srikanth – updated June 2008

DocID: 1r4c5 - View Document

Engineering / Critical phenomena / Phase transition / Materials science / Structural engineering

EUROMATSymposia Structure/Area D Title: Materials at extreme conditions: static or dynamic compression combined or not with low or high temperatures Organizer Institution Contact email

DocID: 1r0FY - View Document