<--- Back to Details
First PageDocument Content
Probability and statistics / Probability theory / Convex analysis / Central limit theorem / Random variable / R. Tyrrell Rockafellar / Mathematical optimization / Stochastic dominance / Probability distribution / Mathematical analysis / Mathematics / Statistics
Date: 2014-07-09 09:01:38
Probability and statistics
Probability theory
Convex analysis
Central limit theorem
Random variable
R. Tyrrell Rockafellar
Mathematical optimization
Stochastic dominance
Probability distribution
Mathematical analysis
Mathematics
Statistics

i SPbook i[removed]page 491

Add to Reading List

Source URL: www.siam.org

Download Document from Source Website

File Size: 105,11 KB

Share Document on Facebook

Similar Documents

Hausdorff Center for Mathematics, Summer School (May 9–13, 2016) Problems for “Discrete Convex Analysis” (by Kazuo Murota) Problem 1. Prove that a function f : Z2 → R defined by f (x1 , x2 ) = φ(x1 − x2 ) is

DocID: 1vjVY - View Document

How elegant modern convex analysis was influenced by Moreau’s seminal work. Samir ADLY University of Limoges, France

DocID: 1vhAg - View Document

December 8, 2016 Errata to Kazuo Murota, Akiyoshi Shioura, and Zaifu Yang: “Time Bounds for Iterative Auctions: A Unified Approach by Discrete Convex Analysis”

DocID: 1vbMj - View Document

Hausdorff School: Economics and Tropical Geometry Bonn, May 9-13, 2016 Discrete Convex Analysis III: Algorithms for Discrete Convex Functions Kazuo Murota

DocID: 1v6lO - View Document

Operator Splitting Methods for Convex Optimization Analysis and Implementation Goran Banjac St Edmund Hall

DocID: 1v2Df - View Document