<--- Back to Details
First PageDocument Content
Algebraic topology / Functors / Homotopy theory / Universal property / Adjoint functors / Sheaf / Natural transformation / Limit / Equivalence of categories / Abstract algebra / Category theory / Algebra
Date: 2014-02-27 11:31:47
Algebraic topology
Functors
Homotopy theory
Universal property
Adjoint functors
Sheaf
Natural transformation
Limit
Equivalence of categories
Abstract algebra
Category theory
Algebra

Add to Reading List

Source URL: www.math.harvard.edu

Download Document from Source Website

File Size: 202,41 KB

Share Document on Facebook

Similar Documents

Category theory / Mathematics / Abstract algebra / Functors / Limit / Adjoint functors / Universal property / Diagram / Natural transformation / Coproduct / Product / Grothendieck topology

Cartesian Closure for Stable Categories (draft) Paul Taylor

DocID: 1rpTZ - View Document

Algebra / Abstract algebra / Mathematics / Monoidal categories / Representation theory / Coalgebra / Bialgebra / Universal property / Hopf algebras / Lie algebras / Hopf algebroid

Kawaguchi --- Fibered products of Hopf algebras and Seifert-van Kampen theorem for semi-graphs of Tannakian categories.pdf

DocID: 1rgMI - View Document

Algebra / Abstract algebra / Mathematics / Sheaf theory / Sheaf / Grothendieck topology / Coherent sheaf / Representable functor / tale cohomology / Direct image functor / Functor / Universal property

ยด Etale cohomology Prof. Dr. Uwe Jannsen Summer Term 2015

DocID: 1r9r6 - View Document

Patent law / Monopoly / Academia / Economics and patents / Patent / Economics / Imperfect competition / Innovation / Intellectual property / Cross-licensing

Intellectual Property Rights and the Future of Universal Service Obligations 3rd Annual Trends in Innovation in the Postal Market Conference Christian Jaag, Ph.D. September 13, 2012

DocID: 1qXXM - View Document

Category theory / Theoretical computer science / Mathematics / Bisimulation / F-coalgebra / Coinduction / Functor / Coalgebra / Universal property

1. Bisimulation everywhere 2. The power of coinduction 3. More bisimulations, still

DocID: 1qXxc - View Document