<--- Back to Details
First PageDocument Content
Metallurgy / Thermodynamics / Critical phenomena / Phase transitions / Spinodal decomposition / Spinodal / Nucleation / Grain boundary / Cahn–Hilliard equation / Physics / Chemistry / Materials science
Date: 2013-04-06 16:23:50
Metallurgy
Thermodynamics
Critical phenomena
Phase transitions
Spinodal decomposition
Spinodal
Nucleation
Grain boundary
Cahn–Hilliard equation
Physics
Chemistry
Materials science

doi:[removed]j.jallcom[removed]

Add to Reading List

Source URL: spinodal.narod.ru

Download Document from Source Website

File Size: 343,52 KB

Share Document on Facebook

Similar Documents

A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation Daozhi Han⇤, Xiaoming Wang† July 24, 2014 Abstract

DocID: 1ffNZ - View Document

Aerodynamics / Water waves / Atmospheric dynamics / Navier–Stokes equations / Vorticity / Boussinesq approximation / Cahn–Hilliard equation / Surface tension / Fluid dynamics / Fluid mechanics / Physics

Topological Transitions in Liquid/Liquid Interfaces J.S Lowengrub J. Goodmany H. Leez E.K. Longmirex M.J. Shelley{ L. Truskinovskyk

DocID: 19GRw - View Document

Physics / Piping / Water waves / Cahn–Hilliard equation / Incompressible flow / Capillary wave / Navier–Stokes equations / Euler equations / Phase field models / Fluid dynamics / Aerodynamics / Fluid mechanics

Quasi-incompressible Cahn–Hilliard fluids and topological transitions By J. L o w e n g r u b1 a n d L. Truskinovsky2 1 Department of Mathematics,

DocID: 19dvK - View Document

Phase transitions / Condensed matter physics / Systems theory / Spinodal decomposition / Cahn–Hilliard equation / Bifurcation theory / Materials science / Physics

Microsoft Word - Document1

DocID: 18JW8 - View Document

Partial differential equations / Aerodynamics / Navier–Stokes equations / Cahn–Hilliard equation / Finite difference method / Computational fluid dynamics / Fluid dynamics / Mathematical analysis / Dynamics / Fluid mechanics

doi:ipixx Inverse Problems and Imaging Volume 7, No. 3, 2013, X–XX 3D ADAPTIVE FINITE ELEMENT METHOD FOR A PHASE

DocID: 183sU - View Document