<--- Back to Details
First PageDocument Content
Proof theory / Ordinal numbers / Constructible universe / Peano axioms / Ordinal analysis / Function / Bounded quantifier / New Foundations / Surreal number / Mathematical logic / Mathematics / Logic
Date: 2009-03-07 14:19:19
Proof theory
Ordinal numbers
Constructible universe
Peano axioms
Ordinal analysis
Function
Bounded quantifier
New Foundations
Surreal number
Mathematical logic
Mathematics
Logic

Add to Reading List

Source URL: www-compsci.swan.ac.uk

Download Document from Source Website

File Size: 313,78 KB

Share Document on Facebook

Similar Documents

PREDICATIVITY BEYOND Γ0 NIK WEAVER Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the Feferman-Sch¨ utte ordinal Γ0 . First we comprehensively criticize the argu

DocID: 1sZO7 - View Document

Mathematical logic / Mathematics / Wellfoundedness / Set theory / Ordinal numbers / Constructible universe / Proof theory / CurryHoward correspondence / Net

Free Theorems for Bidirectional Transformation Janis Voigtl¨ ander Technische Universit¨ at Dresden

DocID: 1qJFy - View Document

Physical chemistry / Thermodynamic activity / Proof theory / Ordinal numbers

The LIFT ADA PROGRAM CERTIFICATION FORM Please complete this application as thoroughly as possible and to the best of your ability. If there are questions you do not understand, please call The LIFTfor assist

DocID: 1qJ5b - View Document

Wellfoundedness / Mathematical logic / Mathematics / Constructible universe / Proof theory / Logic / Ordinal numbers / CurryHoward correspondence / Conjugate element

Parametricity for Haskell with Imprecise Error Semantics Florian Stenger1 and Janis Voigtl¨ ander Technische Universit¨ at Dresden

DocID: 1qEWJ - View Document

Mathematics / Constructible universe / Net / NC / Proof theory / Theoretical computer science / Abstraction / Ordinal numbers / CurryHoward correspondence

Property-Driven Scenario Integration Jewgenij Botaschanjan and Alexander Harhurin Technische Universität München Department of Informatics Boltzmannstr. 3, 85748 Garching, Germany {botascha,harhurin}@in.tum.de

DocID: 1qAm0 - View Document